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ABSTRACT
The proliferation of applications using artificial intelligence (AI)
systems has led to a growing number of users interacting with
these systems through sophisticated interfaces. Human-computer
interaction research has long shown that interfaces shape both user
behavior and user perception of technical capabilities and risks. Yet,
practitioners and researchers evaluating the social and ethical risks
of AI systems tend to overlook the impact of anthropomorphic, de-
ceptive, and immersive interfaces on human-AI interactions. Here,
we argue that design features of interfaces with adaptive AI sys-
tems can have cascading impacts, driven by feedback loops, which
extend beyond those previously considered. We propose Design-
Enhanced Control of AI systems (DECAI), a conceptual model to
structure and facilitate future, practical impact assessment of AI
interface designs. DECAI draws on principles from control systems
theory—a theory for the analysis and design of dynamic physical
systems—to dissect the role of the interface in human-AI systems.
We show how DECAI can be used in a case study on conversational
language model systems. We believe our work provides a new and
needed evaluation direction for future investigations of interfaces
as important mediators of fairness, transparency, and trust in AI.
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1 INTRODUCTION
Decades-long trends have shown that the success and popularity
of a technology depend on the usability, accessibility, and user-
friendliness of its interface [30, 46]. This trend is also evident in the
development of new applications with artificial intelligence (AI)
systems; scholars have suggested that TikTok’s broad popularity
should be attributed not only to its recommendation algorithm but
also to its vertical video design, which, among other things, makes
bad recommendations less noticeable [66, 84]. And, analyses of
ChatGPT’s virality regularly point to its minimalistic and unobtru-
sive user interface as being a key driver of its success [16, 75].

While the significance of interfaces in the adoption of AI appli-
cations is widely recognized, researchers and practitioners tend to
overlook their impact when evaluating AI systems for potential
harms and risks. For instance, audits of algorithmic decision-making
aids investigate system fairness by observing how changes in model
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inputs influence outputs [6]; studies of polarization driven by rec-
ommendation algorithms use sock puppet accounts to simulate
different engagement patterns and analyze the resulting recommen-
dations [38]; and, safety benchmarks in natural language processing
and generation evaluate how models themselves could avoid gen-
erating undesirable content [14]. While all of these evaluations
are critical indicators of potential downstream harms, they do not
account for the design and structure of the user interface through
which the majority of people receive AI systems post-deployment.

Research in human-computer interaction (HCI) and science and
technology studies has shown that technology cannot be studied
by abstracting out interfaces [17, 77]. A notable area of research in
this space has examined unethical interface designs, known as dark
patterns; studies on dark patterns continue to reveal the prevalence
of digital designs that steer users to complete, often detrimental,
actions that they would not necessarily complete otherwise [33,
59]. Interfaces do not only facilitate such autonomy-undermining
influence on user behavior, but they also shape user perceptions of
technologies, their capabilities, and their risks [78]. For example,
consider how explanations of AI predictions have been integrated
into interfaces that mediate human interactions with AI decision-
making aids. While intended to improve fairness, research has
shown that how these explanations are presented in interfaces
can lead decision-makers to place unwarranted trust in biased AI
predictions [36, 41].

Critically, in AI applications, user interfaces are also sites of
data collection for increasingly adaptive AI systems: every time a
user interacts with an adaptive system, they supply it with new
information that influences that system’s future outcomes [57, 60].
This creates feedback loops of human-AI behavior, that shape out-
comes without additional involvement from system developers [61].
For instance, in social media platforms, user engagement with cer-
tain types of content can lead the recommendation algorithm to
prioritize similar content, perpetuating a cycle of exposure and
interaction [55]. The design of AI interfaces, therefore, directly in-
fluences these temporal dynamics, as interfaces mediate how users
receive and respond to model output over time. As such, interface
designs may contribute to cascading harms, both at the individual
level, such as addictive and extractive usage, and at the societal
level, like the spread of misinformation.

Thus, to better understand the ethical and social risks of AI sys-
tems post-deployment, we must scrutinize AI interface designs.
Here, we bridge HCI research on interfaces with the scholarship
on AI harms and risks by developing a conceptual model to aid
in the assessment of AI interface design choices, which we call
Design-Enhanced Control of AI systems (DECAI). DECAI’s draws
on principles from control systems theory — a theory for the design
and analysis of dynamic physical systems. DECAI breaks down
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the role of the interface in processing system input and present-
ing system output, providing a structure for generating testable
hypotheses for evaluating the impact of AI interface designs (Sec-
tion 3). We show how DECAI can be used as a starting point to
analyze the impact of design features on different user groups using
a case study on conversational language model systems (Section 4).

2 BACKGROUND & RELATEDWORK
2.1 Theory of Affordance
In the study and practice of user experience design, the theory of
affordance, first articulated in the human-centered design space by
Norman in 1988, has become a central analytical tool [48, 68]. An
affordance is defined as the properties of a system communicating
to users the possible actions to complete with or upon the system.
Affordances are distinct from features and outcomes, as affordances
“mediate between the properties of an artifact (features) and what
subjects do with the properties of an artifact (outcomes)” [20, p. 2].
For example, a button on a website is a feature; its affordance is the
suggestion to the user that it can be clicked, where the outcome
may be submitting a form or closing a window.

More recently, Davis’ Mechanisms and Conditions framework of
affordances (M&C framework hereinafter) has shifted the central
question in affordance theory from what technologies afford to
how technologies afford, for what subjects, and under what circum-
stances [18]. The mechanisms in the M&C framework specify a
continuum of action intensities, or of how a technology requests,
demands, encourages, discourages, refuses, or allows user action. The
conditions specify how different users (e.g., more technically literate
vs less technically literate) or circumstances (e.g., high pressure
vs low pressure environments) may lead to different experiences
of affordances. This framework addresses two critiques of affor-
dance theory: the binary mechanism of afford or not afford, and
the universal subject and experience of affordances [19, 69].

The M&C framework is well suited to operationalize affordances
within today’s sociotechnical landscape, notably when applying it
to AI systems [19, 79]. In our work, we use it specifically to focus
on the design features and corresponding affordances of (1) AI-
generated content (i.e., displays of model output), (2) transparency
(i.e., displays of model understanding like explanations or perfor-
mance metrics), and (3) interaction (i.e., elements of user engage-
ment and feedback) [49, 53].

2.2 From Neutral Designs to Harmful Ones?
Affordances aid in understanding the potential for designs to lead
to harmful impacts. Design features are tools for designers to con-
vey a system’s affordances to users [68]. In turn, as theorized by
Mathur et al., design affordances shape the choice architecture, or the
way different action options are arranged, presented, and framed
for users, thereby highlighting some of these options over others
[54, 59]. Essentially, as design affordances influence user-system
interactions, choice architectures strategically organize these pos-
sibilities to subtly guide user behavior. A harmful design feature
is one that facilitates actions detrimental to users in the short or
long term. For example, a design pattern can lead to deceptive af-
fordances, compromising and harming user autonomy by tricking
users into performing certain actions [10, 59].

In our work, we follow Chordia et al., Di Geronimo et al., and re-
lated studies that do not consider designer intentions in identifying
a design feature as harmful [15, 21, 33]. We take this position as our
focus is on the outcomes of interactions, irrespective of intentions.
In other words, if a design feature causes a negative impact then
it should be considered a harmful design. We also take this posi-
tion since, as Di Geronimo et al. note, understanding intentions of
designers is subjective and difficult to discern [21].

2.3 Conceptualizing Risks & Harms in
Sociotechnical Systems

Research on the negative impact of AI systems has expanded in
response to their growing deployment. This research broadly con-
ceptualizes harm as the negative outcomes of “entangled dynamics
between design decisions, norms, and power" [81, p. 2]. There is a
research focus on identifying and categorizing existing harms as
well as anticipatory risks of various harms, including representa-
tional, economic, and social harms [81, 86]. Adjacent to this research
is research developing measurement tools such as impact assess-
ments, algorithmic audits, and variousmodel evaluation approaches
[12, 63, 74, 83]. In such research, assessing the negative impact of AI
systems is understood as constructing evaluative proxies for harm
that can be used to affect certain regulatory or technical decisions
[63].

A growing subsection of AI impact and harm research draws
on HCI perspectives and methodologies to delve into how human
behaviors and interactions with AI systems complicate responsible
AI practices [4, 53]. In HCI research, a significant area of study is the
study of ‘dark patterns,’ a term originally coined by Brignull, which
directly examines the harms inflicted by digital interface designs
[11]. In this work, harm is understood as user-centric, interaction-
focused, and conceptualized more narrowly as direct impact on
individuals. Early dark patterns studies focused on privacy and
financial harms caused by features such as intrusive pop-ups in
cookie banners [34, 82], deceptive pricing layouts in online shop-
ping websites [58, 85], and compulsive reward systems in video
games [31, 89]. More recent studies have broadened to other do-
mains and different types of harm; some researchers investigate
“attention-capture" harms, showing that dark patterns that lead
to addictive consumption are prevalent on social media platforms
[64, 65]. Others examine dark patterns across internet-of-things
devices, highlighting many instances of privacy harms [47]. In our
work, we extend these studies to analyze interface designs in AI
applications with a focus on the harms they pose to individual
welfare and the feedback loops of human-AI behavior that could
make them distinct.

3 DECAI: DESIGN-ENHANCED CONTROL OF
AI SYSTEMS

In this section, we introduce a model, which we call DECAI, that
borrows from principles of control systems theory to represent
repeated human-AI interactions.

3.1 DECAI’s contributions
3.1.1 Generating hypotheses for iterative, empirical assessments.
Current impact assessment frameworks prioritize the identification,
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evaluation, and mitigation of harms associated with the deployment
of AI systems [12, 63]. DECAI’s aim is to facilitate the early stages
of these assessments, specifically targeting interface designs. It can
assist practitioners in systematically identifying particular design
features for detailed examination and provide a structured approach
for formulating focused, testable hypotheses suitable for empirical
study. Furthermore, DECAI implicitly considers the diverse condi-
tions of users, such as their technical proficiency and emotional
states, in that process ensuring that hypothesis generation takes
these various user experiences into account.

3.1.2 Motivating the utility of control systems theory. We propose
drawing on control systems theory due to both its pragmatic and
conceptual relevance. First, this field of research emphasizes the
dynamic study and control of multi-component systems that are in-
herently variable, mirroring the sociotechnicality and adaptability
of human-AI systems [3]. Second, it highlights control and mod-
eration within systems — two themes conceptually connected to
autonomy-undermining designs, control of behavior through choice
architectures, and other themes of interest in the AI harms and de-
ceptive design research communities [7, 8, 32, 56]. Increasingly, HCI
research has grappled with the challenges of designing user experi-
ences for AI systems particularly due to (1) the uncertainty of AI
systems’ capabilities and (2) the complexity of AI systems’ outputs,
which may range from simple to adaptively complex [22, 87, 88].
This context of variability and complexity underscores the rele-
vance of DECAI’s approach, which integrates control systems the-
ory to analyze and respond to the dynamic nature of sociotechnical
systems and their often overlooked feedback loops.

DECAImodels a core property ofmodernAI systems: their adapt-
ability. Although other properties (e.g., stochasticity, agenticness)
may also be significant from a harm perspective (see Section 5),
we concentrate on adaptability as it is both a widespread property
and one that directly contributes to the evolution of the human-AI
system through feedback mechanisms [60, 76]. In the following sec-
tions, we introduce the system components of DECAI (Section 3.2),
detailing its control objectives (Section 3.3) and the nature of its
inputs and outputs (Section 3.4). Sections 3.5 and 3.6 propose five
distinct stages to evaluate the impact of a design feature on user
behavior and welfare during cycles of human-AI interaction.

3.2 System Components
In a typical control system, the controller is the central decision-
making component of the system. The process is the entity being
regulated by the controller. The actuator is the component that
implements the controller output, and the sensor is the component
that monitors and relays new input on the process state back to the
controller. In response, the controller adjusts its control strategy and
consequently its future output [67]. For example, in a home heating
system, the thermostat acts as the controller, regulating the room’s
temperature, which is the process. The heating or cooling unit, the
actuator, adjusts the temperature based on the thermostat’s settings.
The thermostat’s built-in sensor monitors the room temperature
and feeds this information back to the controller, enabling the
thermostat to continually fine-tune its temperature settings over
time [37, 67].

3.2.1 DECAI components. Figure 1 presents a block diagram of our
proposed closed-loop system model, and Table 1 displays a full list
of variables, functions, and their definitions.Wemodel theAI block
as the controller and the user block as the process. We model the
interface block as including both the actuator and the sensor. The
actuator transforms AI-generated output into a format that can
be presented to the user in the interface. The sensor gathers new
input data from the user’s interactions with the system’s output,
and relays this data back to the controller, creating a feedback
mechanism [29]. While our model is informed by control systems
theory, it diverges from a traditional directional control model:
instead of the AI block exerting control over the user block, our
approach emphasizes the collaborative interaction of these two
components toward achieving the control objective [52].

Table 1: Definitions of the functions and variables of DECAI

Variable/Function Definition

𝑡 Time
𝐼 User input
𝑂 AI-generated output
𝐶 (𝑢𝑠𝑒𝑟 ) User condition
𝑑 Design feature
𝐴(𝑑) Affordance of a design feature 𝑑
𝑓AI Function processing user input to AI out-

put
𝑓actuator Function transforming AI output to be

presented in the interface
𝑓sensor Function mapping user input prefer-

ences to user action on the interface
𝑓affordance Function mapping design feature to de-

sign affordance

3.2.2 Initializing DECAI. At time 𝑡 = 0, we identify the user input
available to the AI block as limited to one or a combination of three
options: (1)manual setting of user preferences, such as directly se-
lecting interests when onboarded to a new social media application;
(2) third-party information, such as cookies and location data, as
a proxy for user preferences; or (3) no user-specific input, in which
case the system is set to a predefined default setting. At 𝑡 > 0, the
interface changes to reflect any AI-generated output based on this
initial set of user preference data (manual, third-party, or default),
and the sensor begins to collect new user input in response to these
outputs. For example, on a streaming platform, the recommendation
algorithm (AI block) generates content recommendations for the
user (user block) based on their initially set interests. These content
recommendations are then presented in the user interface (actua-
tor). The interface (sensor) collects user engagement signals with
the content over time and relays it back to the recommendation
algorithm to inform future recommendations.

3.3 Control Objective
In complex and real-world systems, optimizing for and balancing
multiple control objectives is often necessary [9, 23]. For instance,
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Figure 1: DECAI model consisting of an AI block, user block, and interface block.

in a home heating system, along with maintaining the room tem-
perature, the system may need to optimize for energy efficiency
and minimize costs. To simplify DECAI and its objectives, we limit
it to human-AI systems consisting of one individual and one AI sys-
tem. As our goal is to assist those investigating the negative impact
of interface designs, we suggest the primary control objective as
the minimization of user harm. This objective aligns with widely
recognized goals among technology providers, policymakers, and
researchers to minimize harm in interactions with advanced AI
systems [24, 35, 42].

3.4 Inputs and Outputs
The interface block in our model clarifies the dual functionality
embedded in human-AI interfaces, which both present AI-generated
output and collect user input. We define the system’s user input
as 𝐼 and AI-generated output as 𝑂 . The constraints, defined as
the limitations that restrict the possible values, on 𝐼 and 𝑂 arise
from two sources. First, there are hard constraints, determined
by an AI system’s inherent technical limitations. For example, a
conversational AI system may be limited to textual data processing,
and thus users may only enter text input and receive text output.
Second, there are soft constraints, shaped by a human-AI system’s
design features. These features influence the presentation of AI-
generated output and the nature of user input in the system. Our
model is focused on studying how the affordances of design features
constitute soft constraints.

To model the impact of affordances, we utilize the action intensi-
ties defined in the M&C framework (see Section 2.1). These action
intensities range from demand, representing the strongest push for
a certain user action, to refuse, representing the strongest opposi-
tion to a certain user action. In between, there exist intermediate
intensities such as encourage for moderate promotion of an action,
request for a mild suggestion, allow for neutral permission, and
discourage for moderate dissuasion. A user action can be defined as
an action taken by the user either on the system (e.g., in the form
of user input) or outside of a system (e.g., in the form of an external
decision). An affordance 𝐴(𝑑) of a design feature 𝑑 consists of both

an action intensity and a user action, and can be represented as
𝐴(𝑑) = 𝑓affordance (𝑑).

3.5 The Cycle of Human-AI Interaction
As the human-AI interaction cycle commences at 𝑡 = 0 with the AI
system generating its first output, 𝑂AI, we propose the following
three stages for investigating the impact of an interface design
feature in a single cycle:

Stage 1 - What are the conditions of the receiving user? A user
processes AI-generated output and provides input according to
their individual conditions, 𝐶 (𝑢𝑠𝑒𝑟 ). Drawing on both the con-
ditions from the M&C framework, we propose considering five
condition axes: (1) cognitive ability, (2) technological proficiency,
(3) domain expertise, (4) context of use (e.g., physical and environ-
mental constraints), and (5) psychological or emotional state of the
user [20, 53].

Stage 2 - What are the relevant interface design features and their
affordances? The design features of both the AI-generated output
and the user input should be identified:

(1) How is the AI-generated output presented in the interface?
As seen in Figure 1, the user does not receive the raw AI-
generated output, 𝑂 , but rather a processed version from
the actuator, 𝑂transformed, which is designed to be compre-
hensible and useful to the user. This is shaped by both the
content of the output and one (or several) interface design
features, denoted as 𝑑1. 𝑑1 may have one or a set of affor-
dances, 𝐴(𝑑1) = 𝑓affordance (𝑑1), that influence a user’s ac-
tions upon receiving this transformed output. This results
in 𝑂transformed = 𝑓actuator (𝑂,𝐴(𝑑1)).

(2) How do different user preferences translate to user action on
the interface? Then, the user may respond to this output by
providing new input, 𝐼 , to the interface. However, the input
action is influenced by the design affordances, 𝐴(𝑑2), of one
(or several) design features, denoted as 𝑑2, in the interface
at the point of data collection by the sensor. This results in
𝐼transformed, where 𝐼transformed = 𝑓sensor (𝐼 , 𝐴(𝑑2))
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Stage 3 - What is the impact of these affordances on the user state?
Considering the user’s conditions, the intensity and associated user
action of the affordances should be mapped to their potential impact
on user behavior and welfare.

This single cycle ends with the AI block receiving the new user
input, 𝐼transformed.

3.6 Evolution Over Time: Repeated Cycles &
Feedback Loops

The cycle described above repeats numerous times and the inter-
action dynamics between the user and AI system evolve via con-
tinuous feedback loops. As the AI block processes the new user
input, 𝐼transformed, from the sensor, which may reflect updated user
preferences or needs, it produces an updated output, 𝑂𝑡+1. This
results in a feedback loop where 𝑂𝑡+1 = 𝑓AI (𝑂𝑡 , 𝛼 · 𝐼transformed),
and where 𝛼 represents a scaling coefficient that determines how
much the user’s input affects subsequent AI-generated output and
𝑂𝑡 represents the previous latest AI-generated output.

We propose examining two types of feedback: (1) reinforcing
feedback or positive feedback, which amplifies behaviors or patterns
in the system, and (2) optimizing feedback or negative feedback,
which adjusts the system to more closely align with the initial
control objective [5, 61].

Stage 4 - How does the impact of these design affordances evolve
over time? We suggest that the impact of interface designs on
human-AI interactions is specifically influenced by reinforcing feed-
back, as it shapes the long-term evolution of user behaviors in
response to the AI system. To model this, we introduce a time-
dependent affordance function,𝐴(𝑑, 𝑡) = 𝑓affordance (𝑑, 𝑡). This func-
tion captures how the intensity and associated user action of a
specific design affordance evolves, either increasing or decreasing
over time. Consider a case where there is no external intervention
or shift in the user condition, 𝐶 (𝑢𝑠𝑒𝑟 ), within the control system.
In this case, the user’s mental models and the AI system’s behav-
ior reinforce each other over time, increasing the action intensity
of an affordance in its original direction. For instance, a design
𝑑 that initially encourages a user action might gradually shift to-
wards demanding that action as 𝑡 increases, at least for a specified
duration.

Stage 5 - What is the frequency of these updates? Parties with
access to more information about the AI system, like technology
developers, may also analyze the rhythm of this interaction cycle.
The frequencies of output presentation by the actuator, data col-
lection by the sensor, and data processing by the AI system, can
vary. This variability means the actuator and sensor may operate
on different cycles, affecting the nature and timing of the feedback
loop [5].

4 CASE STUDY
Here, we show how DECAI can be used to interrogate design
choices in a case study that offers testable hypotheses and grounds
our model in examples of various user conditions, input and output
affordances, and categories of harm.

4.1 Conversational language model systems
Large language models (LLMs) are being increasingly integrated
into conversational user interfaces. As models continue to generate
plausible but inaccurate information, concerns of potential over-
reliance on LLM-generated output have grown [51, 62]. Here, we
analyze how design choices in ‘typical’ conversational LLM inter-
faces (i.e., interfaces with text-input fields and linear conversation
flow displays) contribute to flawed mental models of LLMs, espe-
cially when users are seeking high-stakes specialized advice, such
as medical advice.

Stage 1 — What are the conditions of the receiving user? We iden-
tify two user conditions, 𝐶1 (𝑢𝑠𝑒𝑟 ) and 𝐶2 (𝑢𝑠𝑒𝑟 ), and hypothesize
about how they affect users’ mental models of LLMs in conver-
sational interfaces. 𝐶1 (𝑢𝑠𝑒𝑟 ) is users’ technology proficiency;
the majority of lay users will have limited technical knowledge of
how LLMs work, and thus may overestimate LLMs’ capabilities and
underestimate their limitations [92]. 𝐶2 (𝑢𝑠𝑒𝑟 ) is users’ domain
expertise; the majority of lay users seeking medical advice from
an LLM will have limited domain knowledge, and thus may be less
effective at discerning the quality of LLM responses.

Stage 2 — What are the relevant interface design features and their
affordances? We identify the system output as the LLM-generated
text presented to the user, and the system input as user queries
entered in the input text box.

We first identify some design features and their affordances in
presenting the LLM-generated output. The first set of features we
identify are anthropomorphic cues, 𝑑1, such as humanoid profile
pictures, typing indicators, and natural language cues. Such cues
have several affordances: 𝐴1 (𝑑1) allows for social and emotional
engagement, 𝐴2 (𝑑1) allows for developing human-like trust, and
𝐴3 (𝑑1) encourages sensitive disclosures [40, 90]. The second feature,
𝑑2, is the lack of or insufficient (e.g., hidden in an about page)
disclosure of LLM use. The following are affordances of this lack of
transparency: 𝐴1 (𝑑2) encourages sensitive disclosures and 𝐴2 (𝑑2)
discourages fact-checking [71].

Then, we examine important design features and their affor-
dances in collecting queries from users. The main feature we iden-
tify is the inability to edit input after submission, 𝑑3. This feature
has two affordances:𝐴1 (𝑑3) refuses revision and𝐴2 (𝑑3) discourages
sensitive disclosures.

From these features, we choose to assess the impact of anthro-
pomorphic cues and their affordances.

Stage 3 —What is the impact of these affordances on the user state?
Here, we hypothesize about the impact of these design affordances
on users. We first address impact on user behavior, and hypothesize
that as users inquire about medical advice, they reveal sensitive
information, such as personal identification data and medical his-
tory. If they receive an inaccurate response from the system, they
are less likely to critically evaluate this response and more likely
to accept it, assigning it human-like trust [72]. Then, we address
potential harms from these user behaviors: since some companies
may engage in user data collection to improve future models or
fine-tune existing ones, there are data leakage and profiling risks
[73]. Additionally, depending on the nature of the medical advice,
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overreliance on the advice presented may translate into real-world
action or inaction that could harm the user.

Stage 4 — How does the impact of these design affordances evolve
over time? Finally, we could examine how user interactions with
these cues evolve, focusing on the development and reinforcement
of user mental models of LLMs. We can first examine the poten-
tial reduction in the action intensity of some affordances: when
users are repeatedly exposed to anthropomorphic LLMs, does their
growing familiarity lead them to perceive the LLMs as less social
and more mechanistic [71]? Then, we can address potential in-
creases in action intensity and ask: do users, over time, reinforce
their anthropomorphization of LLMs as a result of natural language
anthropomorphic cues in the LLM output [90]?

4.2 Limitations — After DECAI
The case study presented above shows how DECAI can be used
to analyze and develop relevant hypotheses for evaluating design-
mediated human-AI interactions. DECAI is not intended as a de-
finitive solution for interface design impact assessment; rather, it
serves as a starting point for researchers, designers, and auditors
to discern how design choices shape user behavior and potentially
result in nuanced harms. In practical applications, impact assess-
ment may be challenging due to the potential difficulties in isolating
effects, selecting ‘neutral’ design baselines, and allocating resources
to examine long-term impacts.

We encourage future work to build out a full evaluation pipeline
that incorporates practical evaluation methods. For example, design
features and affordances can be identified through heuristic reviews
or think-aloud user studies [2, 64]. We also recommend iterative
and empirical testing of the hypotheses generated through DECAI.
For instance, user interface designers may conduct online exper-
iments and longitudinal user engagement studies to empirically
examine the impact of design features on user well-being [45]. And,
researchers and auditors focused on AI harms can leverage surveys
and incident reporting to systematically gather evidence, aiming to
assess the real-world impacts of AI interface designs [12]. Evidence
procured through these methods has historically been crucial in
guiding regulatory measures to counteract harmful design patterns
[44].

5 DISCUSSION
We view our work as an initial step towards rigorously examining
the reality of AI interfaces as critical sites for harm propagation
and reduction. We develop a conceptual model, DECAI, to structure
and facilitate investigations into the impact of AI interface designs.

Regulatory opportunities.Audits of dark patterns have gained
notable regulatory traction, being codified into both EU and US
law [25, 27, 28]. We believe that our work can aid researchers and
policymakers in building on this momentum in the AI context. Cur-
rently, AI-focused legislation such as the EU AI Act only indirectly
addresses interface designs through regulations on transparency,
human oversight, and AI-driven manipulation [26]. However, inter-
face designs may allow for the circumvention of such regulation, for
example, by allowing for the strategic placement of transparency
disclosures to diminish their visibility. Our results also point to how
harmful designs can be used to further data collection, a practice

central to today’s AI industry [43]. In that way, interface designs
can be pivotal in shaping both current and future regulations aimed
at responsible AI practices.

Beyond adaptive AI systems. Our work examines the adapt-
ability of AI systems and the feedback loops of human-AI behavior
at play. However, other properties of AI systems are emerging as
necessary axes of consideration. For instance, the stochasticity of
LLMs has amplified concerns around predictability, explainability,
and accuracy [87, 91]. Research has also drawn attention to harms
from the increasing agenticness of AI systems, where an ‘agentic’
system is defined as one capable of pursuing complex goals with
limited human supervision [13]. Here, seamless interfaces may be
especially damaging, as friction could facilitate interruptibility and
prevent unwanted outcomes [80]. More research is needed to un-
ravel the design complexity of interfaces attending to various such
properties of AI systems.

Beyond digital interfaces.Additionally, while digital interfaces
are the subject of the vast majority of the literature, the adoption
of modern AI systems in interactive physical interfaces is likely to
increase [50]. Interacting with AI systems in physical space brings
about its own set of design challenges around accessibility, data col-
lection, and deception [70]. As physical interfaces may increase the
possible design affordances and their risks, it is important to further
investigate and expand impact assessment models like DECAI to
accommodate these considerations [39].

Considering disparate impact. DECAI considers user condi-
tions across several axes, including knowledge and well-being, in
its impact assessment approach. We made this choice in response
to research which has consistently demonstrated that computing
harms do not affect all users equally [1, 81]. For instance, in the con-
text of human-AI interactions, vulnerable and marginalized groups,
such as children, the elderly, and those with limited technical lit-
eracy, may have more flawed mental models of AI systems, their
capabilities, and their risks. We believe that DECAI is an initial step
that researchers can build upon to better evaluate how interface
designs may disproportionately impact different societal groups
and harm collective rather than individual welfare.
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