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ABSTRACT
Researchers seek inspiration during the research process. Large
Language Models (LLMs) have the potential to inspire researchers
to make progress in their research, especially in the ideation pro-
cess, but it is challenging to assess this capability. We envision (1)
developing a scale—Inspiration scale—that captures key elements
of inspiration, (2) evaluating the capability of existing LLMs for in-
spiring researchers in the research ideation process, and (3) further
transforming the developed scale into an auto-assessment rubric for
LLMs to align human-perceived and machine-assessed inspiration.
In this paper, we develop a list of items for human evaluators by
(1) compiling metrics for inspiration through a systematic litera-
ture review and (2) contextualizing them in the context of research
ideation. We discuss the next steps to validate our scale, evalu-
ate LLMs using the scale, and develop an auto-assessment rubric
aligned with our original scale.

CCS CONCEPTS
• Computing methodologies→ Natural language generation;
• Human-centered computing→ Human computer interac-
tion (HCI); HCI design and evaluation methods; • General
and reference → Evaluation.

KEYWORDS
Large Language Models, Evaluation, Creativity, Inspiration, Scale
development

1 INTRODUCTION
In a scientific research process, researchers seek inspirations in per-
forming various tasks such as identifying research opportunities by
analyzing prior literature, designing and conducting experiments,
and ideating future research directions [41]. Inspirations1 involve
1We denote “inspirations” as artifacts that aim to facilitate inspiration. We use the
term “inspiration” to indicate a conceptual entity.
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evocation (i.e., there need to be external stimuli), transcendence (i.e.,
an individual realizes novelty on the stimuli), and motivation (i.e.,
the stimuli motivates an individual to act) [111]. In this sense, Large
Language Models (LLMs) have a potential to meet the characteris-
tics by providing novel ideas (evocation and transcendence) on topics
that researchers are interested in, which could help researchers cre-
ate actionable to-do items for research progress (motivation).

It is questionable whether and how well LLMs can inspire re-
searchers in a scientific research process. One way to answer the
question is to measure how inspiring LLM responses are in sci-
entific QA [69] settings, but it is unclear what metrics should be
employed to specifically inform the strengths and weaknesses of the
models providing inspiration. Prior research used a set of related
metrics to evaluate how inspiring LLM responses are (e.g., whether
generated texts are helpful [47], novel [35], and creative [26]), but
the metrics in the prior research are highly diverse and context-
specific depending on the research focus. Such diversity makes
it challenging to understand an overall landscape of aspects that
should be considered when evaluating the capability of LLMs to
provide inspiration. Developing a general-purpose, validated scale
for assessing LLM-generated inspiration can offer a straightforward
yet thorough method for evaluating their inspiration capability, us-
ing fine-grained metrics to examine and compare the performance
of LLMs.

Our ultimate goal is to (1) develop and validate an inspiration
scale for evaluating inspirations by following a standard method-
ology for developing scales [32, 61, 85] and (2) evaluate how in-
spirational LLMs are in a scientific QA task. We acknowledge that
a single standard inspiration scale may not perfectly capture the
unique nature of diverse research domains and processes. Neverthe-
less, the inspiration scale can serve as a good default for assessing
the inspirational capability of LLMs, offering researchers the op-
portunity to adapt the scale according to their specific interests. In
this paper, we report (1) results of a systematic literature review
that compiles metrics used for measuring inspiration and (2) a list
of items (i.e., questions for human evaluation) after contextualizing
the metrics to research process (Figure 1). Then we discuss future
work to achieve the ultimate goal.
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� Domain-specific quality 
metric�

� Novelt�
� Originalit�
� Creativit�
� Feasibilit�
� Elaboratio�
� Conventiona�
� Completeness

Metrics

A. Idea Quality Novelty of idea�
� The response breaks away from common solutions and offers truly unique perspectives�
� The response offers insightful solutions that haven't been explored before�
� The answer is infused with innovative and thought-provoking approaches.



Feasibility of idea�
� The response offers practical and attainable solutions�
� The response provides ideas feasible to execute�
� Ideas in the response can be realistically implemented�
� The response provides ideas that are realistic within the given context. 


Applicability of idea�
� The response offers adaptable information readily applicable to various situations�
� The response provides a foundation easily tailored to specific needs and contexts�
� The response provides a versatile foundation for further exploration and application.

Breadth of knowledge - diversity of idea�
� The response  presents a wealth of different approaches, ensuring a well-rounded perspective�
� The response showcases a broad spectrum of solutions, encouraging further consideration�
� The response offers a wide range of ideas, showcasing different perspectives and approaches. 


Breadth of knowledge - sufficiency in number of idea�
� The response offers enough ideas to spark creativity and stimulate exploration�
� The response provides a sufficient starting point for productive brainstorming and problem-solving. 


Breadth of knowledge - no redundancy between idea�
� The provided options are clearly distinct, avoiding redundancy and overlap�
� The suggestions cover a broad spectrum, encompassing various possibilities without being repetitive.

Perceived utilit�
� The suggestions are helpful for exploring different possibilities�
� The response is useful in the context of brainstorming ideas�
� This information helps to expand the scope of potential solutions�
� The response offers valuable input for exploring different approaches. 


Promoting creative thinkin�
� The response prompts me to develop an approach I had not previously considered�
� The response stimulates me to explore new directions of solving the problem�
� The response sparks my curiosity to try out alternative solutions�
� The response encourages me to think of a new way to tackle the issue. 


Impact on my ideation proces�
� The response questions my initial assumptions or beliefs, encouraging me to explore different viewpoints�
� The response influences my thought process, providing me with fresh perspectives and methods.

Research community�
� The response directly tackles the current challenges identified by researchers in my field of study�
� The response meets the specific needs and goals of the research community of my interest�
� The response aligns with the current state of knowledge and ongoing research endeavors�
� The response closely corresponds with the latest research trends and priorities within the relevant research 

community.



Ethical consideratio�
� The response suggests approaches that align with widely accepted ethical principles�
� The response presents solutions that are unlikely to raise ethical concerns for most people�
� The response avoids solutions that could be seen as harmful or morally questionable�
� The response champions ethically sound approaches to the problem.

Specificit�
� The response is rich in information and specific examples�
� The response offers concrete details and data to support its claims and arguments�
� The response lacks depth and specifics 


Comprehensibilit�
� The response presents a structured and logical flow of information, aiding comprehension�
� The information is well-organized and easy to follow, making it clear and understandable�
� The provided information is clearly defined and avoids ambiguity, ensuring every point is precise�
� The details are clearly presented and easy to follow, even for complex topics 


Relevanc�
� The response aligns with the subject matter of my inquiry�
� The response answers the essence of my question�
� The response directly addresses my question. 


Consistenc�
� The response presents coherent and consistent ideas, avoiding any conflicting perspectives�
� The response demonstrates a unified and well-integrated flow of thought, free of contradictions�
� The response clearly communicates ideas free of ambiguity, preventing any misinterpretations or contradictions.

B. Idea Space

� Quantit�
� Diversit�
� Evennes�
� Depth

Metrics

C. Impact of ideas 

on users

� Inspirin�
� Usefulnes�
� Surpris�
� Task influenc�
� Helpfulnes�
� Satisfyin�
� Motivationa�
� Distractive

Metrics

D. Social acceptance

� Appropriatenes�
� Flexibilit�
� Valu�
� Realisti�
� Acceptance

Metrics

E. Human Alignment

� Relevanc�
� Elaboratio�
� Fluenc�
� Understandabilit�
� Repetitiveness

Metrics

Figure 1: Results of contextualization. Metrics found from the systematic review were grouped into five themes and translated
into items in the context of research ideation.
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ITEM 

DEVELOPMENT

SCALE 

DEVELOPMENT

SCALE 

EVALUATION

Literature Review Contextualization Expert Review Understanding  
Psychometric Properties

Validation Study

METRICS ITEMS
INSPIRATION


SCALE

Figure 2: Overall approach for developing an inspiration scale. We develop items by compilingmetrics for evaluating inspiration
from systematic literature review and contextualizing the metrics into a research process. After getting feedback on the
developed items from experts, we are planning to polish the items by understanding psychometric properties, conducting
exploratory factor analysis. Then we validate the items as a scale by conducting confirmatory factor analysis and an additional
validation study.

2 RELATEDWORK
We review research about (1) the concept of inspiration and their
effects and (2) systems that offer inspirations and their evaluation.

2.1 Effects of inspiration
Inspiration is the process of being stimulated by external arti-
facts [80, 103]. Some other perspectives define inspiration as the
external stimuli [45, 113]. The inspiration helps individuals to be
more creative in various ways. Specifically, the inspiration enriches
a creative process and influences human behavior, leading to posi-
tive experiences. In terms of creative process, inspiration assists in
solve problems [45], influences cognitive mechanisms [113], and
alters problem framing [65]. Once getting inspired, individuals feel
a desire to express [34], generate new and diverse ideas [103], and
consider a wide range of perspectives [103]. It results in feeling
excitement, satisfaction, a sense of coalescence, and an arousal of
long-termmemory [37, 45]. However, inspiration can also have neg-
ative consequences such as leading design fixations and disrupting
designers’ thinking [45].

Evaluating the effects of inspirations is mostly done by human
evaluations with various focuses. One of the popular methods is to
design Likert-scale questions that ask users (i.e., those who receive
inspirations) about how they perceive the given inspirations [16,
54, 121]. External judges are recruited for evaluating the quality of
inspirations in the domain and understanding how the inspirations
affected the creative process of users [15, 16]. We aim to develop
and validate an inspiration scale for evaluating inspirations so that
researchers can not only measure inspirations with a validated scale
but also be informed about a landscape of evaluating inspirations
as a guideline.

2.2 Systems for offering inspirations
Research has introduced systematic approaches for providing in-
spiration where some of the approaches are (1) offering predefined
sets of examples [20, 84], (2) sampling ideas through computational
exploration of the idea space [23], and (3) adaptively offering ideas
based on the user’s ongoing creations [21, 46]. As research is a

highly creative process, systems for facilitating effective inspira-
tions for researchers have been introduced. For instance, research
introduced techniques for suggesting novel ideas [116], searching
related work [66, 87], adapting ideas [43, 52], and generating review
of a paper [25].

To show the effects of inspirations offered by systems, research
measured various dimensions of provided inspirations, including
creativity [4, 103], usefulness [20, 121], and how it influences the
creative process [54, 104]. However, research has employed diverse
sets of metrics with various descriptions of what the metrics mean.
It remains unclear what the comprehensive set of metrics is for mea-
suring inspiration. We aim to develop and validate an inspiration
scale via a systematic methodology for scale development.

Creativity Supporting Tools (CSTs) [102] are related systems
where the goal is to assist users’ creative process. The evaluation of
CSTs mainly focuses on usability of the tools and quality of users’
creative outcomes. For assessing the usability, Creativity Support
Index (CSI) [18] has been widely used in addition to general us-
ability assessment metrics such as NASA-TLX [40] and SUS [10].
Assessing the creative outcome is mostly done by human evalua-
tions of domain experts. In this work, we focus on measuring LLM
responses instead of a holistic evaluation of LLM as a tool for offer-
ing inspirations. We believe that our scale can be informative for
evaluating tools for offering inspirations by incorporating usability
perspectives of the process.

3 OVERALL APPROACH FOR DEVELOPING
INSPIRATION SCALE

Figure 2 shows an overall approach for developing and validating
an inspiration scale, following a standard methodology [6]. In the
first phase, we develop a set of items (i.e., questions for the evalua-
tion) by taking an inductive approach: (1) conducting a systematic
literature review to create a list of relevant metrics with inspiration,
(2) creating items by contextualizing the metrics to research process,
and (3) reflecting expert feedback on the created items. The second
phase is scale development, where we run a human evaluation
study (N = 150) with the created items. Using the evaluation results,
we perform exploratory factor analysis [30] to identify core factors
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HCI [5, 7, 13, 15, 16, 20–23, 26, 27, 33, 38, 42, 48, 52–54, 63, 67, 70, 73, 74, 77, 78, 83, 84, 90, 98–101, 103–105, 107, 108, 110, 114, 119, 121, 124, 127]
AI/LLM [2, 3, 8, 12, 14, 17, 19, 26, 28, 29, 39, 44, 51, 55, 57–60, 62, 64, 68, 72, 75, 76, 82, 86, 88, 89, 91, 92, 94, 95, 115, 118–120, 126, 128]

Cognitive Science [31, 36, 50, 71, 79, 81, 93, 96, 97, 106, 109, 112, 117, 123]
Table 1: The list of papers containing human evaluation with metrics, identified from the systematic literature review.

that describe the items and remove potentially redundant items.
The final phase is scale evaluation, which evaluates our items as a
scale. In other words, we evaluate whether the items capture key
properties of inspirations via a validation study.

In this paper, we report the results of a systematic literature
review and a list of items through contextualization (Phase 1). Then
we describe future work (Phase 2 and 3).

4 SYSTEMATIC LITERATURE REVIEW
To create items for developing an inspiration scale, we conducted
a systematic literature review as an inductive approach of item
development.

4.1 Procedure
Figure 3 shows a diagram illustrating the overall procedure. We
sampled papers that include evaluation of inspirations given by a
system (e.g., ideas [23, 75], feedback [9, 56], and images [74]) until
the year of 2023 through web search. Since the concept of inspira-
tion has been discussed in various research fields, we targeted three
fields of research: (1) AI/LLM, (2) HCI, and (3) Cognitive Science.
Specifically, our goal was to review papers that (1) asked users to
perform creative tasks, (2) offered inspirations to support the task,
and (3) evaluated the provided inspirations. As such, our search
keyword includes “inspiration”, “creativity”, “ideation”. Also, we
included keywords “measure” and “Likert” for sampling papers
that include human evaluation with specific metrics as evaluating
ideas have been mostly done by human (i.e., users and external
judges). Finally, we included field names (e.g., “LLM” for AI/LLM,
and “Human-Computer Interaction” for HCI).

From the search results (523 papers in total), we filtered papers
that contain evaluations of inspirations from the system by reading
their evaluation methodology. Then we listed the name (e.g., “Unex-
pectedness”) and description of the metrics (e.g., “how unexpected a
prompt was”) from each paper, which resulted in 97 papers (Table 1)
with 202 metrics in total (allowing duplicates between papers). To
come up with a list of unique metrics, we assigned a label for each
of the raw metrics where a label represents a single metric. In other
words, we assigned the same label for raw metrics if the description
of the metrics took the same perspective. Three authors assigned
labels for 20% of the metrics together and made a consensus around
how to assign labels. Then, each of the three authors individually
assigned labels for 80% of the metrics and resolved conflicts to-
gether. Finally, 30 unique labels have been identified, and each label
corresponds to a metric.

4.2 Result
Figure 1 shows the list of metrics identified from the systematic
literature review. We recognized 5 themes of the metrics based on
the target of measures: evaluating (1) idea quality, (2) idea space,

COGNITIVE 

SCIENCE

HCI AI/LLM

BASE QUERY: (“inspire” OR “inspiration”) 

AND (“creative” OR “creativity”) 


AND (“ideation” OR “brainstorming”) 

AND (“criteria” OR “metric” OR “measure”) 


AND (“Likert” OR “rating”) AND (year <= 2023)


Author keyword: 


in JSTOR 

(n = 143)


 (BASE QUERY)



Filtering

“Journals”

Papers containing evaluations with metrics


97 publications, 

202 metrics (allowing duplicates),


30 unique metrics


Filtering

“Research Article”

Author keyword: 


in ACM (n = 223)


(BASE QUERY) 
AND (“HCI” OR 
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Computer 

Interaction”)
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in Google Scholar 
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“Large Language 
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Figure 3: The systematic literature review process.

(3) impact of ideas on users, (4) social acceptance, and (5) human
alignment.

4.2.1 Idea quality. One of the major evaluation targets is the qual-
ity of ideas, where commonly used metrics include Novelty, Origi-
nality, Creativity, and Feasibility. Research also introduces domain-
specific quality evaluation metrics depending on the context (e.g.,
Coherency for story writing task [21] and Aesthetics for image gen-
eration task [7]). Research often invites expert judges to evaluate
the quality of ideas.

4.2.2 Idea space. The space of ideas is another important theme
of evaluation in ideation tasks. The subject of idea creation can be
both systems and users. Metrics include Quantity, Diversity, and
Evenness. Such metrics can be employed not only for human evalua-
tion but also for quantitative evaluation through operationalization
(e.g., computing Diversity as the mean pairwise distance between
ideas [16]).
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4.2.3 Impact of ideas on users. It is important to understand how
the ideas affect users’ creative process, cognitive process, and over-
all experience. Research used metrics such as Inspiring, Usefulness,
and Surprise, and Task Influence. Researchers measured the impact
of ideas by asking such questions to the users [54, 105] or examin-
ing how users’ creative process have been altered after the users
browsed system-offered ideas [16].

4.2.4 Social acceptance. Research also examined whether the ideas
can be socially accepted by taking a broader perspective. Metrics
include Appropriateness, Flexibility, and Acceptance. We found, how-
ever, that few research discussed ethical considerations of the ideas,
which is an important consideration in AI [49]. We add a few items
regarding the ethical perspectives, emphasizing the importance of
the community.

4.2.5 Human alignment. The idea description needs to be aligned
with human values. Metrics include Relevance, Elaboration, and
Understandability. Metrics in this theme can be generally employed
in contexts other than ideation tasks. Researchers may employ
other related metrics about human alignments as well (e.g., Factu-
ality [125]).

5 CONTEXTUALIZING THE METRICS TO
RESEARCH PROCESS

Since the list of metrics is organized from various papers with
different contexts, we developed items by contextualizing the met-
rics into a research process. Our approach is to develop multiple
items for each theme so that the items cover important dimensions
discussed in the prior literature.

We took an iterative approach to create clear items that avoid
ambiguity and multiple interpretations. First, we wrote the descrip-
tion of the metrics, starting with “The response” as our evaluation
target is LLM response. With the initial list of items, we conducted
a pilot human evaluation study where the three authors rated LLM
responses using the initial items. The LLM responses were for
questions that ask potential future research directions, given a dis-
cussion section of a research paper. For items that are unclear or
have multiple possible interpretations, we rewrote the items or
decomposed the items into multiple items to make them clearer.
We iterated the process until we have clear items.

As a result, we designed 48 initial items (Figure 1). Note that the
items will be reduced to a smaller number of items where we expect
to have approximately 10 items in the final version, considering
the practicality of the evaluation. Prior research recommended that
the initial pool of items could be five times as large as the final
version [122].

We are planning to conduct an expert review session on the items
to understand whether the items represent the key characteristics of
inspiration in the research process. Our plan is to invite experienced
researchers (e.g., faculty or postdoctoral-level) in different research
fields (e.g., AI/LLM, HCI, and Cognitive Science) to get feedback
from diverse perspectives.

6 FUTUREWORK
To evaluate inspirations of LLMs via both human evaluation and
automatic evaluation, our future work addresses (1) understanding

psychometric properties and validating the scale and (2) evaluating
inspirations of multiple LLMs and analyzing their strengths and
weaknesses in offering inspirations via both human evaluation and
automatic evaluation.

6.1 Understanding psychometric properties and
validating the scale

To develop a validated scale, we perform two studies: (1) a study to
understand psychometric properties and further polish the items
and (2) another study to validate the list of items as a scale.

6.1.1 Study 1. Understanding psychometric properties. The scale
development process involves identifying core factors that describe
the overall items and reducing redundant items [6, 111]. Therefore,
we aim to conduct a study with 150 participants via crowdsourcing.
In the study, we ask participants to rate a GPT-4 response, which is
potentially inspiring for the participants, using the developed items
in a scenario of brainstorming future research ideas. As our scenario
requires brainstorming research ideas, our target population of the
participants is those who have prior research experiences.

It is not straightforward to generate GPT-4 responses that could
be inspiring for the participants (i.e., researchers). To provide in-
spiring experiences, we (1) ask participants to upload a pdf of a
paper that they are interested in, (2) generate an ideation question
using GPT-4 by leveraging the paper contents (See Figure 4 for the
prompt), (3) ask participants to regenerate or revise the question in
a way that the response is expected to provide inspirations to them,
and (4) ask participants to rate the response generated by GPT-4
for the question. In this way, we can expect that the participants
would rate responses that potentially offer inspirations.

After collecting the ratings, we conduct exploratory factor anal-
ysis [30] to identify the core factors. Based on the factors, we can
further reduce the items by removing highly correlating items. We
will also drop items that are not closely related to any of major
groups. An item reliability test [24] could further drop items that
are not closely correlates with items in the same factor group.

6.1.2 Study 2. Validating the scale. In this study, we aim to validate
our scale. The procedure is similar to Study 1, but we perform
confirmatory factor analysis [11] and reliability test [24] on the
evaluation results.

In the study, we also include other validated measures in psychol-
ogy (e.g., cognitive load, enjoyment, and Inspiration Scale [111]) to
show discriminant validity and convergent validity of our scale. We
further validate our scale by comparing the ratings of the responses
to different types of questions. Here, we assume that certain ques-
tions are more prone to be inspirational and ratings for those will
be higher. For example, asking about solutions to a problem would
be more likely to produce inspiring responses compared to asking
about the definition of a concept.

6.2 Evaluating inspirations of LLMs
Using the scale, we evaluate how well existing LLMs offer inspi-
rations to researchers and analyze strengths and weaknesses of
LLMs in providing inspirations to researchers. We follow a similar
methodology for evaluating LLM capabilities [1, 125].
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[[ Title, Abstract, Introduction, and Discussion section of paper ]]



{{ Title, Abstract, Introduction, and Discussion section of the user’s paper }} 



[[ Definition of ideation question ]]



Ideation questions in the context of research process explore ways to extend current research by either improving upon it or by 
applying the findings to different contexts.



[[ Examples ]]



What potential future research directions could be explored to further enhance the effectiveness and efficiency of multi-task offline 
reinforcement learning, particularly in terms of integrating adaptive learning algorithms or exploring different domains and 
applications beyond robotic manipulation and drone navigation?



How could the OnIS framework be further developed to enhance its robustness and adaptability in dynamically changing 
environments, and what are the potential applications in real-world scenarios where environmental unpredictability is a significant 
challenge?



[[ Instruction ]] 



Now, generate three self-contained questions for ideation. Avoid the use of the phrase 'in the text.' Exclude any second-person 
pronouns like 'you,' so no questions should start by 'can you.' Spell out all the acronyms.


Figure 4: The prompt used for generating ideation questions that are expected to produce inspiring ideas to researchers. In
addition to the definition of the ideation question, we put the title, abstract, introduction, and discussion contents of a paper
that the researcher is interested. In this way, we can generate questions that address specific contexts of the paper, which is
likely to produce inspiring ideas about the paper.

In the evaluation process, we conduct both human evaluation
and automatic evaluation to see the feasibility of using LLMs as an
evaluator. We report the correlation between the two evaluation
results and discuss what automatic evaluation can measure well and
not. Also, we can further transform the developed scale into a rubric
for automatic evaluation that better aligns with human-perceived
inspiration.
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