
Towards a Holistic Evaluation of
LLM Generated Code for Exploratory Visual Analysis

Anonymous Author(s)∗

ABSTRACT
Large Language Models (LLMs) demonstrate their efficacy in pro-
ducing code for the analysis and visualization of data. However,
evaluating the quality and validity of the generated code poses
challenges. While common evaluation metrics assess aspects like
code correctness and functionality, they often fall short in capturing
the nuances of analytic code, such as whether the code accurately
reflects the user’s intended data analysis and whether the visual-
ization and textual explanations in the output are appropriate and
relevant. To explore these challenges, we study the LLM-generated
codes for visual data analysis tasks. Specifically, we use the open
coding in grounded theory method to analyze the generated code
and identify six components of analytic code: setup, attribute map-
ping &creation, data operations, model operations, visualization
specification, and summary. We then ideate examples of failure
states for each of these components and further derive a set of four
types of evaluation (functional, semantic, contextual, and prefer-
ential). We conclude by discussing the necessity and challenges of
developing multi-criteria metrics for analytic code.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; • Computing methodologies → Artificial intelligence.

1 INTRODUCTION & MOTIVATION
The program synthesis capabilities of Large Language Models
(LLMs) pose exciting opportunities for automating aspects of data
science [1, 4]. Already, data scientists and analysts rely on a plethora
of AutoDS techniques for a variety of tasks, from data preparation,
exploration, modeling, and dissemination [6, 30]. Being able to gen-
erate custom code for these tasks, in near real-time, can improve
both the speed and reproducibility of data science workflows. How-
ever, the capabilities and quality of analytic code the LLM produces
can be difficult to assess.

We argue that existing metrics for evaluating LLM-generated
code are too coarse to capture the nuances and complexity of data
analysis. To motivate this case, we present an example in Figure 1 of
an exploratory visual analysis (EVA) task [2]. In this example, a par-
ticipant from a user study [13] asks a ChatGPT AI agent to visualize
“what decks were the various classes located on?” using the canonical
Titanic dataset1. The model outputs a visualization of a tile plot
showing the total count (label, hue) of passenger classes (x-axis) by
ship deck (y-axis). Generating this analytic code requires the model
1https://hbiostat.org/data/repo/titanic.html

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published inWoodstock
’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2024, Woodstock, NY ,
https://doi.org/XXXXXXX.XXXXXXX.

to correctly map the user’s analysis intent to the dataset being
analyzed and the plethora of simple (e.g., column mapping, sums)
and complex (e.g., feature engineering, model selection) data and
model operations. There are myriad ways this could go wrong, from
syntactic errors, to failing to understand the nuanced semantics
of the data and possible data operations. Readers who are familiar
with the Titanic dataset will recognize that there is no ‘deck’ col-
umn in the dataset (Figure 1A). The agent generated this column
by extracting the first letter of the cabin code, which it did without
user direction but by likely relying on other knowledge it had2.
The ability to recruit and apply external information, correctly or
incorrectly, is both fascinating and makes debugging AI-generated
code more complex.

The goal of this preliminary investigation is to develop a frame-
work for discussing these aspects of code generation for data sci-
ence tasks. By conducting an initial qualitative analysis of ten AI-
generated code examples, we propose a framework consisting of
two parts. The first part decomposes the generated code into six
different types of code components. The second component intro-
duces a set of evaluative lenses to characterize failure states for
each of these code components. While our focus in this study is
on EVA, further research can expand our approach to other data
science tasks, such as data preparation, feature engineering, model
selection and optimization, and analysis dissemination. Our objec-
tives in this preliminary investigation are to provide a scaffold for
stimulating broader community discussion on AI-generated code
for data science.

2 EXISTING BENCHMARKS AND METRICS
FOR EVALUATING CODE GENERATION

We review the recent work on LLMs for visual analytics and evalu-
ation metrics for code generated by these models. While we do not
discuss specific models for code generation, interested readers can
refer to Liu et. al. [19].

2.1 LLMs for Visual Analytics
With the recent surge of LLMs, studies have explored their appli-
cations across diverse data analysis tasks, such as visualization
generation [8, 17, 23], automatic chart summarization [14, 28],
chart-question answering [9, 24], conversational interface for data
analysis [13], and data-driven story generation [12]. A number of
benchmark datasets are developed for these tasks, however, these
benchmarks typically focus on generating texts [14, 24] or visual-
izations [21] rather than code. In contrast, common benchmarks
for code generation, such as HumanEval [3], MBPP [25] do not
specifically focus on exploratory data analysis tasks. DS-1000 is
a code generation benchmark that is designed for data science
problems [16], but it does not particularly focus on generating
2see https://www.encyclopedia-titanica.org/cabins.html and for an example see https:
//www.kaggle.com/code/ccastleberry/titanic-cabin-features

https://hbiostat.org/data/repo/titanic.html
https://doi.org/XXXXXXX.XXXXXXX
https://www.encyclopedia-titanica.org/cabins.html
https://www.kaggle.com/code/ccastleberry/titanic-cabin-features
https://www.kaggle.com/code/ccastleberry/titanic-cabin-features

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY Anon.

What decks were the various classes located on?Utterance

Generated
Code

Visualization

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

tab10 =
["#4e79a7","#f28e2c","#e15759","#76b7b2","#59a14f","#edc949",
"#af7aa1","#ff9da7","#9c755f","#bab0ab"]
sns.set_palette(tab10)
sns.set(style="white")

Load the Titanic dataset
df = pd.read_csv(‘./workspace/Titanic-Dataset.csv')

Create a new column 'Deck' by extracting the first
character from the 'Cabin' column
df['Deck'] = df[‘Cabin'].str[0]

Group the dataset by fare class and deck, and calculate the
count of passengers in each group
class_deck_count =
df.groupby(['Pclass'‘Deck']).size().reset_index(name='Count')

Pivot the DataFrame to create a heatmap representation
heatmap_data = class_deck_count.pivot('Deck', 'Pclass',
‘Count')

Plotting the heatmap using seaborn
plt.figure(figsize=(8, 6))
sns.heatmap(heatmap_data, annot=True, cmap=‘YlGnBu')

Add labels, annotations, and/or title
plt.xlabel(‘Class')
plt.ylabel(‘Deck’)

Print a caption
print("This heatmap shows the distribution of decks for each
fare class. The x-axis represents the fare class (1, 2, or
3), the y-axis represents the deck (A, B, C, D, E, F, G, or
T), and the color represents the count of passengers in each
combination. It can be seen that the higher fare classes (1
and 2) have passengers on multiple decks, while the lower
fare class (3) is concentrated on the lower decks.")

Data

Operations

Visualization
Specification

Setup

Summary

Attribute

Mapping

& Creation

Failure to load necessary libraries

Failure to load dataset

 Cannot access data source

 Incorrect datasource reference

 Incorrect datasource format

Failure to map attributes

Invalid visualization specification

Irrelevant domain context

Inappropriate Visual Encoding

Invalid Interpretation of findings

Failure to generate attributes

Inappropriate data operation

Invalid sequence of operations

Potential Failure Modes

A

B EXAMPLE EVA UTTERANCE

DATASET OVERVIEW
Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 1 Blackwell, Mr. Stephen Weart male 45 0 0 113784 35.5 T S

1 3 Sandstrom, Miss. Marguerite Rut female 4 1 1 PP 9549 16.7 G6 S

0 3 Strom, Miss. Telma Matilda female 2 0 1 347054 10.4625 G6 S

Figure 1: Example of analytic code generated for utterance by a generative AI chatbot. [A] Shows a snippet of the analysis
dataset. [B] Shows DS steps necessary to generate the code and examples of potential failure modes. The utterance, code, and
visualization presented here are derived from a user study with an AI chatbot. Absent is a Model Operations step.

Towards a Holistic Evaluation of
LLM Generated Code for Exploratory Visual Analysis Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

visualizations or text summaries. Liu et al. [17] do generate visual-
izations using LLMs but evaluate the generated visualization output
primarily based on simple accuracy measures. In sum, there is a
gap in understanding the capabilities and limitations of LLMs in
generating code for visual analytics which motivated our study.

2.2 Evaluation Metrics
Evaluation methods for generated code can be broadly categorized
into three groups: exact match, similarity, and functional correct-
ness. Exact match metrics require that the generated code be identi-
cal to a reference. While desirable in certain scenarios, this criterion
can often be too strict to apply in practice. Reference-based similar-
ity metrics such as BLEU-score may not align with human judgment
[10]. Functional correctness metrics are inspired by test-driven soft-
ware practices, where code is required to pass pre-defined unit
tests. While both exact match and similarity metrics may capture
functional correctness by proxy, they also penalize working code
that differs from the reference. In contrast, the pass@K metric com-
putes the probability that at least one of k generated code examples
will pass a unit test for a given problem. While some aspects of
data science coding practices are amenable to test driven devel-
opment (TDD) paradigms, we argue that some data science tasks,
notably exploratory data analysis, do not easily conform to TDD.
Researchers have also explored evaluation metrics beyond these
categories. Dibia et. al. [7] considers human preference relative to
functional correctness. They found that humans prefer code that
may fail pre-specified unit tests (e.g., pass@K), but can be easier
to modify or adapt compared to those that do pass unit tests. ELO
rating has also been used to capture preference in head-to-head
comparisons of multiple LLMs [31].

While these metrics may be applied to analytic code, they are
likely too coarse to capture its nuances. For example, none of these
metrics consider whether the model effectively captures the ana-
lyst’s intents – something that has been more widely studied by
the HCI and data visualization researchers [29].

3 A FRAMEWORK FOR THE EVALUATION OF
ANALYTIC CODE

We sought to understand the composition and possible failure states
of analytic code that include, but also go beyond, functional correct-
ness that is the present primary evaluative metric. Prior research
on the structure of data science code, relative to more general pro-
gram code, is limited and focuses on programming practices and
style [26], not data science, or more specifically EVA, tasks [15].
In this section, we describe a preliminary framework that consists
of two parts, a set of code components and a set of evaluative
lenses. We describe our approach and provide more details of our
framework components.

3.1 Approach
We gathered ten examples from a user study with an LLM chatbot
that assisted with EVA tasks conducted on the canonical Titanic
dataset [13]. While the steps taken to fine-tune model as well as the
construction of the prompt itself are essential for ensuring response
quality, we will temporarily leave those concerns aside and focus
solely on the code that has been generated by the model.

In this user study, participants posed utterances as analytic state-
ments or questions (e.g., “show me the average income for each
class?”) based on the given data table, rather than utterances for
specific code generation (e.g., ’pandas code to group data by pclass
column and then compute the average fare using fare column’).
Prompted by these analytic statements or questions, the AI agent
was tasked with generating executable Python code, and the result-
ing output was presented to the end user. The output included a
visualization and an associated summary tailored to address the
specific user query. We gathered and examined ten such examples
(utterances, generated code, and output) and analyzed the code
using the open-coding approach. We began by doing a line-by-line
annotation of the generated code, collapsing lines with similar an-
notations. We compared annotations across the code examples and
collapsed these annotations into six high-level categories (setup,
attribute mapping& creation, data operations, visualization specifi-
cation, and summary). We next ideated on possible errors that could
arise and that were specific to these code annotations. We further
collapsed this list of errors into four types of evaluations that could
capture them (functional, semantic, contextual, and preferential).
Future extensions of this work will explore additional data science
tasks and a broader set of annotated human and AI-generated code;
for this preliminary investigation, we focus on EVA.

3.2 The Components of Analytic Code
We define six categories of annotations for analytic code, and EVA
tasks specifically. These are summarized in Figure 1. When working
collaboratively with an AI agent, the analyst could ask the agent
to generate specific code pertinent to some category. For example,
for attribute mapping/creation and in a computational notebook
environment, the analyst could prompt an agent to “write a lambda
function to parse the first character from the Cabin column”. The ex-
ample shown in Figure 1 considers a more complex scenario, where
an AI agent must generate multi-step and functional analytic code
and where the analyst might not have access to modify the gener-
ated code. This scenario is similar to what a tool like OpenAI’s Code
Interpreter, as well as more EVA-specific tools like Chat2Vis [23],
LIDA [8], and AI Threads [13].
Setup code concerns identifying and loading appropriate li-
braries, the data, and if applicable, setting options for these
libraries. In this example, three libraries are loaded, a color palette
is defined, and the options of the seaborn are set. The data here is
a simple CSV file that must be loaded from the correction location
on the file systems. This EVA example forgoes data preparation
steps, such as missing value imputation, or other checks on data
quality. It also does not consider operations that may be necessary
to construct this data, for example, by joining multiple tables in a
database. At present, we consider such data preparation tasks out
of scope for our preliminary investigation, but, to be an important
consideration for extending this work.

The errors that occur in the setup phase can include the failure to
load the correct libraries or connect to an appropriate data source.
Loading the correct libraries can be a complex task, because unless
these libraries are specifically provided to the agent, via system
instructions or in the prompt, the AI agent had to infer the necessary
libraries. In this example, the AI agent must load data processes

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY Anon.

and visualization libraries. The Chat2Vis [23] tool loads a standard
set of libraries in the event the LLM fails to do so. However, this
workaround is not without its limitations. Loading data similarity
presents its own challenges. Loading files from disk may be easier
because the LLM may be provided with specific instructions as to
its location, but, there are no guarantees it use this information
when it generates the setup code. Loading files from databases,
including performing appropriate queries to extract the data, is a
difficult problem [18].
Attribute Mapping and Creation code concerns identifying
appropriate attributes(columns) of the data that are pertinent
to the end-user’s utterance. In our example, two attributes of the
dataset are used (PClass, and Cabin). Prior research has identified
different types of utterance ambiguity when mapping to dataset
attributes. In this example, neither of the attributes necessary for
computation is explicitly referred to in the utterance. Moreover,
we highlight this example over others because the AI agent must
also create a new column, Deck, using an existing attribute and the
additional knowledge that the first letter of cabin refers to the deck.

In the small set of code that we reviewed, attribute mapping was
more common than attribute creation. For the problem of attribute
mapping, there are different levels of complexity depending on how
ambiguous the reference to the attribute is [27]. Ambiguity can
result in semantic misalignment between the utterance and the
dataset, leading to errors.

Attribute creation introduces challenges around integrating the
present dataset with additional information that the analyst may
not specify. Aside from this Deck example, there are also instances
of the LLM creating ad hoc categories for age groups. While we did
not see initial evidence of this, it may be possible for the LLM to
make up an attribute that has no proper grounding in the data or
analysis. To the best of our knowledge, the integration of data with
the LLM’s knowledge has not been thoroughly examined in prior
research, but it can make debugging AI-generated code difficult
because there is no provenance of the agent’s reasoning when
creating new attributes.
Data Operations code concerns transformations of the raw
data into its analytic form. In our examples, these data oper-
ations involve first grouping the data by PClass and the newly
created Deck attributes and then aggregating the total number of
passengers. Not only does the AI agent need to identify the cor-
rect operations to perform, but it must also perform them in the
appropriate sequnce. Again, utterance does not specify these steps
explicitly, they are inferred by the agent.

The errors that can arise in data operation steps are similar to
those for attribute mapping and creation.
Model operations concern code that fits simplemodels.Among
the code examples we reviewed, the most common model operation
was conducting a simple logistic regression to understand the trend
of a bivariate relationship. Analysts could have also applied other
types of models (e.g., trees, forests, svm etc.) or cluster methods to
support their EVA process. While we did not find a lot of evidence
for model operations as part of EVA, we include this as a considera-
tion. We consider more intensive model building attempts, which
would involve more consideration to feature engineering, model
selection, and hyperparameter tuning, to be non-EVA tasks.

AutoML tooling has existed for some time and may make model
operations steps more reliable than its predecessors [6]. However,
once again, errors and challenges with this step are similar to pre-
vious steps.
Visualization specifications code defines the part of the
output that is provided to the analyst. Similar to prior steps,
the utterance may contain a specific reference to an encoding (e.g.,
“show a bar chart of..”) or not. In our example, there is no reference
to a specific chart type and the agent ’chose’ to generate a tile chart.
The choice of the chart is not easily obvious, as it requires some
consideration of the attribute types and the charts that support
them [22]. For example, a single pie chart would be inappropri-
ate because it cannot effectively represent both PClass and Deck.
However, there is also an element of analyst preference that adds
subjectivity to evaluating the efficacy of the result.

Along with previously stated challenges, visualization specifi-
cation introduces new issues. In tools like Code Interpreter, the
underlying code is hidden, and so the visualization, or possibly a
text response, can be the first, and sometimes only, point of contact
between the analyst and AI agent.
Summary code produces a description of the visualization. Prior
research by Lungard et. al [20] suggested a four level semantic
model for generating visualization captions at the level of the encod-
ing (chart type), descriptive statistics (e.g., averages, correlations),
cognitive (patterns, trends), and the domain. The example caption
includes references to the encoding (heatmap and a description of
x and y-axis and use of color) and trends (“it can be seen that..”).
Generating a summary poses various challenges, ranging from the
absence of insights at certain semantic levels (e.g., no sentence
describing trends or patterns) to the generation of factual errors
and hallucinations [14].

3.3 Evaluative Lenses for Analysis Code
After delineating the distinct steps of analytic code, we brain-
stormed the types of errors that could occur, consolidating our
insights into a set of four evaluative lenses presented in Table 1.

While evaluative lenses from the perspective of functional cor-
rectness remain relevant, it is crucial to tailor tests specific to dif-
ferent analytic code steps. For example, tests for setup would be
different than visualization specifications or captions. Hav-
ing good coverage of all these different steps is essential for making
functional correctness tests useful. However, there are also more
nuanced aspects of analytic code and its potential failure states that
cannot be easily reduced to functional correctness. Semantic eval-
uative lenses consider whether the initial utterance can correctly
be mapped to the data and computational operations needed to
process it ahead of visualizations. Contextual lenses assess whether
the response is pertinent to the particular domain, which can in-
clude retrieving pertinent knowledge that is external to the dataset
and applying it appropriately. Preference lenses, which Dibia et.
al. [7] have explored for general code generation, are also pertinent.
However, given the nature of EVAs, we extend their definition to
consider whether the analyst also has a preference for the output
(e.g., chart type, caption).

Whether a multi-step analytic program, as we show in Figure 1,
or, some specific steps, these evaluative lenses allow us to apply

Towards a Holistic Evaluation of
LLM Generated Code for Exploratory Visual Analysis Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

Evaluation
Type

Definition Examples

Functional Whether the generated code runs as intended and
produces expected results from pre-specified test

Specification Errors; Operation Order

Semantic Whether the meaning and interpretation of the gen-
erated code align with the analysts intent

Mapping to analytic intent;

Contextual Whether the generated code is appropriate and rel-
evant to a given domain and/or context

Recruitment of external knowledge

Preference A subjective evaluation of whether the analysts
likes the visualization and/or analysis code style

Interpretability; Adaptability; Encoding
Choice

Table 1: Four evaluative lenses that could be applied to assess analytic code.

multiple criteria for holistically understanding the capabilities of
LLMs to generate analytic code.

4 CHALLENGES AND CALL TO ACTION
The generation of code that analyzes and visualizes data entails sev-
eral distinct yet interconnected steps. Errors at these stages can be
difficult to distill into unit tests, as the current evaluation paradigm
predominantly relies on functional correctness. To demonstrate
the limitations of present evaluative paradigms, we conduct a pre-
liminary assessment of AI-generated code from a user study. We
develop a framework that compartmentalizes analytic code for ex-
ploratory visual analysis into six steps and also proposes a set of
four evaluative lenses to assess those steps. With this framework
and our motivating example as a starting point, we hope to stimu-
late a broader conversation within Human-Computer Interaction,
Visualization, and Machine Learning Communities.

4.1 Extending our findings
There is a pressing need to provide greater consideration to analytic
code, for both EVA and other data science tasks, when evaluating the
code-generating capabilities of LLMs. Our preliminary examination
can serve as a baseline to solicit community input and participation.
Exploring data through the use of visualizations is a common task
that occurs across many stages of data science tasks, including data
preparation and model building [2, 5]. Extending our findings using
further examples of data science code, from repositories like Kaggle
or Github, will help us to further enhance our understanding of the
nuances of analytic code and the capabilities of LLMs to support
its generation.

One particular challenge that we call attention to is the need to
develop multi-criteria evaluation metrics for LLM-generated code.
While our evaluative lenses propose considerations beyond func-
tional correctness, further extensions of our findings should define
additional metrics and their integration. Again, this is not trivial
as different components of analytic code can fail in distinct ways.
Thus, in addition to proposing benchmarks and metrics specific
to EVA and/or other data science tasks, we also need to consider
how they might be reasonably evaluated by people and machines.
As an example, Grunde-Mclaughlin et. al. [11] propose methods
of adapting crowd-sourcing techniques for addressing errors that

arise in LLM chains. Similar innovations may also be necessary for
evaluating analytic code generation.

5 CONCLUSION
We present preliminary work in progress that demonstrates the
challenges of evaluating LLM-generated code for exploratory visual
analysis. Our aim is to stimulate a community dialogue around these
challenges and ideate potential solutions. The HCI and VIS research
communities have long examined the difficulties that data workers
have with EVA, and more generally, developing, debugging, and
collaborating around code. For this reason, our communities have
much to offer valuable insights that complement and extend the
predominately ML perspective on evaluating LLM-generated code.

REFERENCES
[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs.PL]

[2] Leilani Battle and Jeffrey Heer. 2019. Characterizing Exploratory Visual Analysis:
A Literature Review and Evaluation of Analytic Provenance in Tableau. Computer
Graphics Forum 38, 3 (2019), 145–159. https://doi.org/10.1111/cgf.13678

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. (2021). arXiv:2107.03374 [cs.LG]

[4] Liying Cheng, Xingxuan Li, and Lidong Bing. 2023. Is GPT-4 a Good Data
Analyst? arXiv:2305.15038 [cs.CL]

[5] Anamaria Crisan, Brittany Fiore-Gartland, and Melanie Tory. 2021. Passing the
Data Baton : A Retrospective Analysis on Data Science Work and Workers. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2021), 1860–1870.
https://doi.org/10.1109/TVCG.2020.3030340

[6] Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic
Smyth, and Christopher K. I. Williams. 2022. Automating data science. Commun.
ACM 65, 3 (feb 2022), 76–87. https://doi.org/10.1145/3495256

[7] Victor Dibia, Adam Fourney, Gagan Bansal, Forough Poursabzi-Sangdeh, Han
Liu, and Saleema Amershi. 2023. Aligning Offline Metrics and Human Judgments
of Value for Code Generation Models. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, Toronto, Canada,
8516–8528. https://doi.org/10.18653/v1/2023.findings-acl.540

https://arxiv.org/abs/2108.07732
https://doi.org/10.1111/cgf.13678
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2305.15038
https://doi.org/10.1109/TVCG.2020.3030340
https://doi.org/10.1145/3495256
https://doi.org/10.18653/v1/2023.findings-acl.540

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY Anon.

[8] Victor C. Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-
Agnostic Visualizations and Infographics using Large Language Models. ArXiv
abs/2303.02927 (2023). https://arxiv.org/abs/2303.02927

[9] Xuan Long Do, Mohammad Hassanpour, Ahmed Masry, Parsa Kavehzadeh, Ena-
mul Hoque, and Shafiq Joty. 2023. Do LLMs Work on Charts? Designing Few-
Shot Prompts for Chart Question Answering and Summarization. arXiv preprint
arXiv:2312.10610 (2023).

[10] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. 2023.
Out of the bleu: how should we assess quality of the code generation models?
Journal of Systems and Software 203 (2023), 111741.

[11] Madeleine Grunde-McLaughlin, Michelle S. Lam, Ranjay Krishna, Daniel S. Weld,
and Jeffrey Heer. 2023. Designing LLM Chains by Adapting Techniques from
Crowdsourcing Workflows. arXiv:2312.11681 [cs.HC]

[12] Yi He, Shixiong Cao, Yang Shi, Qing Chen, Ke Xu, and Nan Cao. 2024. Leveraging
Large Models for Crafting Narrative Visualization: A Survey. arXiv preprint
arXiv:2401.14010 (2024).

[13] Matt-Heun Hong and Anamaria Crisan. 2023. Conversational AI Threads for
Visualizing Multidimensional Datasets. arXiv:2311.05590 [cs.HC]

[14] Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin, AhmedMasry, Megh Thakkar,
Enamul Hoque, and Shafiq Joty. 2022. Chart-to-Text: A Large-Scale Benchmark for
Chart Summarization. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 4005–4023.

[15] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2018.
Data Scientists in Software Teams: State of the Art and Challenges. IEEE Trans-
actions on Software Engineering 44, 11 (2018), 1024–1038. https://doi.org/10.1109/
TSE.2017.2754374

[16] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Wen-Tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-1000: A
Natural and Reliable Benchmark for Data Science Code Generation. In Proceedings
of the 40th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 18319–
18345. https://proceedings.mlr.press/v202/lai23b.html

[17] Guozheng Li, Xinyu Wang, Gerile Aodeng, Shunyuan Zheng, Yu Zhang,
Chuangxin Ou, Song Wang, and Chi Harold Liu. 2024. Visualization Generation
with Large Language Models: An Evaluation. arXiv preprint arXiv:2401.11255
(2024).

[18] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma,
Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale
Database Grounded Text-to-SQLs. arXiv:2305.03111 [cs.CL]

[19] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2024).

[20] Alan Lundgard and Arvind Satyanarayan. 2022. Accessible Visualization via
Natural Language Descriptions: A Four-Level Model of Semantic Content. IEEE
Transactions on Visualization and Computer Graphics 28, 1 (2022), 1073–1083.
https://doi.org/10.1109/TVCG.2021.3114770

[21] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing natural language to visualization (NL2VIS) benchmarks
from NL2SQL benchmarks. In Proceedings of the 2021 International Conference on
Management of Data. 1235–1247.

[22] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic
Presentation for Visual Analysis. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1137–1144. https://doi.org/10.1109/TVCG.2007.70594

[23] Paula Maddigan and Teo Susnjak. 2023. Chat2VIS: Generating Data Visualiza-
tions via Natural Language Using ChatGPT, Codex and GPT-3 Large Language
Models. IEEE Access 11 (2023), 45181–45193. https://doi.org/10.1109/ACCESS.
2023.3274199

[24] Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. 2022.
ChartQA: A Benchmark for Question Answering about Charts with Visual and
Logical Reasoning. In Findings of the Association for Computational Linguistics:
ACL 2022, Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.).
Association for Computational Linguistics, Dublin, Ireland, 2263–2279. https:
//doi.org/10.18653/v1/2022.findings-acl.177

[25] Augustus Odena, Charles Sutton, David Martin Dohan, Ellen Jiang, Henryk
Michalewski, Jacob Austin, Maarten Paul Bosma, Maxwell Nye, Michael Terry,
and Quoc V. Le. 2021. Program Synthesis with Large Language Models. In n/a.
n/a, n/a. n/a.

[26] Andrew J. Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj, and
Rajesh Vasa. 2020. A large-scale comparative analysis of Coding Standard con-
formance in Open-Source Data Science projects. In Proc. ESEM ’20. Article 1,
11 pages. https://doi.org/10.1145/3382494.3410680

[27] Arjun Srinivasan, Nikhila Nyapathy, Bongshin Lee, Steven M. Drucker, and John
Stasko. 2021. Collecting and Characterizing Natural Language Utterances for
Specifying Data Visualizations. In Proc. CHI’21. Article 464, 10 pages. https:

//doi.org/10.1145/3411764.3445400
[28] Benny Tang, Angie Boggust, and Arvind Satyanarayan. 2023. VisText: A Bench-

mark for Semantically Rich Chart Captioning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
7268–7298.

[29] Melanie Tory and Vidya Setlur. 2019. Do What I Mean, Not What I Say! Design
Considerations for Supporting Intent and Context in Analytical Conversation. In
2019 IEEE Conference on Visual Analytics Science and Technology (VAST). 93–103.
https://doi.org/10.1109/VAST47406.2019.8986918

[30] Dakuo Wang, Q Vera Liao, Yunfeng Zhang, Udayan Khurana, Horst Samulowitz,
Soya Park, Michael Muller, and Lisa Amini. 2021. How Much Automation Does a
Data Scientist Want? arXiv preprint arXiv:2101.03970 (2021). https://arxiv.org/
pdf/2101.03970.pdf

[31] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-Judge with MT-
Bench and Chatbot Arena. https://arxiv.org/abs/2306.05685

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://arxiv.org/abs/2303.02927
https://arxiv.org/abs/2312.11681
https://arxiv.org/abs/2311.05590
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1109/TSE.2017.2754374
https://proceedings.mlr.press/v202/lai23b.html
https://arxiv.org/abs/2305.03111
https://doi.org/10.1109/TVCG.2021.3114770
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/ACCESS.2023.3274199
https://doi.org/10.1109/ACCESS.2023.3274199
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.1145/3382494.3410680
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1109/VAST47406.2019.8986918
https://arxiv.org/pdf/2101.03970.pdf
https://arxiv.org/pdf/2101.03970.pdf
https://arxiv.org/abs/2306.05685

	Abstract
	1 Introduction & Motivation
	2 Existing Benchmarks and Metrics for Evaluating Code Generation
	2.1 LLMs for Visual Analytics
	2.2 Evaluation Metrics

	3 A Framework for the Evaluation of Analytic Code
	3.1 Approach
	3.2 The Components of Analytic Code
	3.3 Evaluative Lenses for Analysis Code

	4 Challenges and Call to Action
	4.1 Extending our findings

	5 Conclusion
	References

