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ABSTRACT
Researchers have evaluated fairness in machine learning with a
variety of technical frameworks, such as group fairness and fair
representations. With the increasingly complex ways in which gen-
erative AI interfaces with human society, it is not clear how these
frameworks can be extended to general-purpose systems, such as
ChatGPT, Gemini, and other large language models (LLMs). Despite
the critical importance of evaluating LLM fairness, we articulate
inherent challenges. In some cases, extant frameworks cannot be
applied to human-LLM interaction, and in others, the notion of a
fair LLM is intractable due to the exceptional flexibility of LLMs in
performingmany different types of tasks with effects on amultitude
of diverse stakeholders, including widely varying user populations.
We conclude with motivating principles for fairness in LLM sys-
tems that foreground the criticality of context, the responsibility of
LLM developers, and the need for stakeholder involvement in an
iterative process of design and evaluation.

KEYWORDS
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1 INTRODUCTION
The rapid adoption of machine learning in the 2010s was accompa-
nied by increasing concerns about negative societal impact, espe-
cially in high-stakes domains. In response, there has been extensive
development of technical frameworks to formalize the concept of
fairness so that it can be detected and enforced. Popular frame-
works include fairness through unawareness, group fairness, and
individual fairness [18]. The frameworks we have today are largely
oriented towards systems that are used in ways more-or-less self-
evident from their design, typically with well-structured input and
output, such as the canonical examples of predicting default in
financial lending [37], predicting recidivism in criminal justice [3],
and text-based tasks such as coreference resolution [69].

Recently, there has been a surge of interest in generative AI,
particularly the relatively general-purpose large language models
(LLMs) that are trained for a foundational task such as next-word
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prediction, tuned with criteria such as conversational output or
satisfying human preferences, and applied to many different use
cases. These use cases span both traditional areas of concern for bias
and fairness, such as evaluating resumes in hiring [5], and novel
applications, such as drafting and editing emails [39], answering
general knowledge queries [59], and code completion in software
development [7].

In this paper, we consider whether and how the extant fairness
frameworks can be applied to modern LLMs. We approach this
mindful of both the hotly contested issues that already persist in the
conventional fairness literature [e.g., 15] as well as the opportunities
and challenges that other paradigms have presented, such as the
difficulty in translating fairness frameworks to information access
systems [21]. Our arguments are grounded in features of this new
paradigm that seem essential for conceptualizing fairness.

First, at the algorithmic level, LLMs have exceptional flexibility.
While their input and output have been largely restricted to natural
language, recent history has shown that a wide range of content
can be expressed in LLM-suitable natural language, and LLMs, or
more broadly the class of so-called “foundation models” [11], are in-
creasingly multimodal, such as the ability of GPT-4V [50] to take as
input both natural language and images. This flexibility is reflected
in the lack of a self-evident use case—or even a relatively narrow
set of use cases—the existence of which has grounded technical
fairness analysis in the past.

Second, foregrounded in our analysis is the multitude of diverse
stakeholders in LLM systems and their evolving relationships. As
discussed in Section 3.2, the LLM is typically created and man-
aged by a developer. The developer may curate the data the model
uses, such as for training and retrieval, and they may also develop
downstream LLM-based applications, though these may be done
by other entities. As with other information systems, there are al-
ways users—whether individuals or groups who may have widely
varying competencies [23]—and usually there are subjects of the
content produced by the system, such as the people or groups be-
ing described in an information request. Additionally, there are
researchers from academia, governments, nonprofits, or elsewhere
aiming to better understand these systems and their societal im-
pacts.

One important trend we see in the field today is that the model it-
self tends to be designed and trained by one entity with user-facing
application development conducted by other groups or individu-
als. While it is good that multiple stakeholders participate in the
LLM pipeline, this structure has led to information asymmetries
that make it difficult to identify and mitigate harm. The sharing
of information, primarily on the side of the LLM developers who
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have information such as how the model was trained and what
data it was trained on, and so on will be crucial for meaningful
progress. With this information, researchers can probe capabili-
ties and conduct particular context-based evaluations. This limited
transparency was foregrounded in the February 2024 controversy in
which the multimodal LLM Gemini developed by Google was found
to diversify race and gender in images generated with prompts
that specified historical settings that would be of a particular race
and gender, such as soldiers and political figures in American and
European historical settings that were almost exclusively men of
European descent [48]. While there is much to be debated in how
race and gender should be portrayed in image generation, third
parties bemoaned the lack of information on the mechanisms by
which these images were generated.

In what follows, Section 2 discusses work to date on LLM fairness,
which focuses on association-based fairness metrics and practical
challenges. Section 3 argues that in some cases there is a fundamen-
tal incompatibility between extant frameworks and modern LLM
systems. Section 4 argues that, in the other cases, the flexibility of
LLMs across data, use cases, stakeholders, and populations renders
a general guarantee, stamp, or certificate of a fair LLM intractable.
To conclude in Section 5, we articulate three principles motivated by
these inherent challenges to move forward in the important goals
of fairness and harm reduction in LLMs: the criticality of context,
the responsibility of LLM developers, and the need for iterative and
participatory design.

2 RECENTWORK ON LLM FAIRNESS
Transformer-based LLMs have been of great interest since they
were introduced in 2017 [63], and this has accelerated since 2020
with the popularity of OpenAI’s GPT models [49]. Many research
teams have considered the role of algorithmic fairness in model
evaluation, including a number of recent papers that have evaluated
bias, discrimination, or fairness in the text generated by LLMs.

2.1 Association-based fairness metrics
Two recent reviews of this nascent literature [28, 42] enumerate
a variety of fairness metrics, each of which constitutes an asso-
ciation between a feature of the embedding space or model out-
put—word probabilities or generated text—and a sensitive attribute.
This includes text measures a disparity of sentiment and toxicity
in Wikipedia sentence completion across the profession, gender,
race, religion, and political ideology of the article subject [16], the
occurrence of violent words after a phrase such as “Two muslims
walked into a” [2], and the topics brought up when completing sen-
tences from fiction novels [46]. Other approaches include creating
datasets of LLM continuations of text that stereotypes, demeans, or
otherwise harms in ways related to gender and sexuality [27]; eval-
uations of conventional fairness measures when an LLM is used for
a conventional machine learning task, such as predicting outcomes
based on a text-converted tabular dataset [43]; recommending mu-
sic or movies to a user who specifies their sensitive attribute such
as race or religion [68]; and testing whether the model provides
the same “yes” or “no” answer when asked for advice by a user
who specifies their gender [61]. It would be very surprising if these

models did not have disparate output given how they are trained,
but these studies have provided useful, rigorous documentation.

However, disparity does not necessarily correspond to fairness in
the sense predominant in the machine learning fairness literature
or in other fields such as philosophy—as documented in Binns
[6]. For example, in the framework of group fairness, which uses
conditional equivalencies across sensitive attributes, mere disparity
is known as demographic parity (see Definition 3), which is only
one of many group fairness metrics and, while it is an important
metric for comprehensive fairness evaluation and enforcement,
achieving demographic parity is generally not viewed as achieving
algorithmic fairness. In general, while the popular benchmarks such
as WinoBias [69] and BBQ [52] that have been applied to LLMs
capture important information about model behavior in relation
to sensitive attributes, there is little reason to think that strong
performance would imply fairness is achieved.

When existing work on LLMs has touched on richer notions of
fairness, it has been in a highly constrained manner. For example,
while Li et al. [42] briefly discussed counterfactual fairness (see Def-
inition 7), they only do so by summarizing two papers that address
it merely by perturbing the LLM input (e.g., converting Standard
American English to African American English [44]), which does
not acknowledge or address the fundamental challenges we present
in Section 4.1 of how metrics fail to generalize across populations
in which the data-generating process could vary significantly.

2.2 Practical challenges
Existing work has motivated and articulated significant challenges
in evaluating and enforcing fairness in LLMs. Both Gallegos et al.
[28] and Li et al. [42] summarize these, including the need to cen-
ter marginalized communities through participatory design [8, 9]
and develop better proxy metrics, such as to bridge the divide be-
tween intrinsic and extrinsic bias metrics [30]. These are important
challenges to be addressed and remain so in light of the present
work, but even if each of them were addressed, the fundamental
challenges that are the focus of the present work would remain.

The fundamental challenges of LLM fairness have yet to be fore-
grounded in part because of the focus of existing work on relatively
narrow use cases, often analyzing the LLM as a classifier or recom-
mender in conventional machine learning use cases through the
use of in-context learning to steer the model towards the conven-
tional output format (e.g., a binary data label or recommendation)
[43, 61, 68]. Given the flexibility of LLMs as text-to-text models,
they can be deployed—though not necessarily with strong perfor-
mance—to any conventional task in which the input and output can
be expressed as a series of tokens. However, LLMs are not primarily
used purely as substitutes for conventional, narrow-purpose mod-
els. The wide applicability of generated text has facilitated a wide
range of applications, which are evolving every month as users
and developers explore possibilities. Examples include coding (e.g.,
creation, autocompletion), communication (e.g., drafting emails,
translation), gathering information (e.g., web search, proprietary
search), recreation (e.g., bedtime stories, personalized travel plans),
and simulation (e.g., data labeling, gaming). Many of these tasks
have not been rigorously considered in the extant fairness literature
despite their increasing prevalence.
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3 SOME FAIRNESS FRAMEWORKS CANNOT
BE APPLIED TO LLMS

It is clear from the extant literature that achieving multiple fairness
metrics simultaneously is intractable in most cases. Well-known
impossibility results show that multiple group fairness metrics,
such as those defined by rates of false positives and false negatives
[14, 36] or demographic parity (Definition 3) and calibration (Def-
inition 5) [36], cannot be simultaneously achieved in real-world
environments. We argue, however, that challenges of LLM fairness
run deeper in that some frameworks cannot even be applied.

3.1 Unawareness is impossible by design
Though often used as a strawman in the algorithmic fairness lit-
erature, perhaps the most common approach to fairness has been
the default of fairness through unawareness (FTU)—simply leaving
sensitive attributes out of the model’s input.

Definition 1. (Fairness through unawareness). A model achieves
fairness through unawareness (FTU) if the input to the model does
not explicitly contain any sensitive attributes.

The concept of FTU largely emerged by considering models
built on structured data, where data is organized into different
variables that are used for prediction or classification. For example,
a financial lending model could use a person’s age, sex, and credit
score to make a prediction about loan repayment. In this case,
FTU could simply mean not using the field “sex” as an input to
the predictive model. Although it has been established that simply
omitting a sensitive field from amodel at training time is insufficient
to guarantee that no unwanted correlations with that attribute will
exist in the model, there are still some cases where legal, policy, or
feasibility constraints lead to this approach being used even though
it is “widely considered naive” [66]. In one of themost widely known
allegations of algorithmic discrimination, heterosexual spouses who
used the Apple Card to make purchases noticed that the woman
in the marriage was extended a much lower credit limit than the
man. The company managing the Apple Card, Goldman Sachs,
defended itself by saying, “In all cases, we have not and will not
make decisions based on factors like gender” [62].

The main critique of this approach is that the sensitive infor-
mation is, often strongly, related to other features included in the
model, so flexible models effectively recover the excluded sensitive
attributes, which offsets potential fairness benefits.

By design, LLMs are trained on unstructured natural language,
a context in which FTU is impossible because of the pervasive-
ness of sensitive attributes in natural language. Efforts to remove
sensitive attributes may result in incoherence or distortion. In the
sentence, “Alice grew up in Portugal, so Alice had an easy time on
the trip to South America,” simply removing Alice’s national origin
of “Portugal” would result in an ungrammatical sentence, and other
choices for how to remove national origin could result in particular
distortions. Substituting a neutral phrase, “a country,” could remove
important narrative information, such as if the author intended to
convey that Alice visited Brazil, the only South American country
in which Portuguese is an official language.

Also, consider how the relative social status of characters in a
narrative can be conveyed through pronoun usage in quoted mate-
rial, such as the more frequent use of the first-person being more
common in groups of lower status [33]. In languages with gendered
nouns (e.g., Spanish, German), enforcing gender fairness may re-
quire introducing entirely new vocabulary, and if nationality, native
language, or other attributes of cultural background are considered
sensitive, then languages, dialects, and subdialects seem extremely
difficult if not impossible to extirpate from text—not to mention
the entanglement of religion and other belief systems. It seems
infeasible to enforce fairness with respect to all relevant sensitive
attributes across large bodies of text while retaining sufficient in-
formation for model performance. There may also be direct ethical
issues with the modification of text. Individual authors may not be
okay with their text being modified, and even if the changes each
seem to not change the author’s intended meaning, it would be
difficult to ever guarantee that no intended meaning was lost or
even, at scale, whether factual information was edited.

As with many of the obstacles to fairness in LLMs—even if these
conceptual challenges were addressed, the lack of transparency
into modern LLMs would still make evaluating FTU impossible.
FTU would require that the LLM be documentably unaware of
the sensitive information, which requires a level of documentation
of training data that is unavailable today—at least to third-party
researchers and auditors. This is especially concerning from the
FTU perspective. While conventional FTU explicitly leaves out the
sensitive attribute, some approaches utilize the sensitive attribute
information to ensure that the model is not even implicitly aware
of the sensitive attribute through proxies, such as zip code as a
proxy for race and income [45, 53]. The lack of LLM documentation
prevents researchers and socially aware application developers
from enforcing FTU, whether explicit or implicit, and from studying
model awareness of sensitive attributes in the first place.

3.2 LLMs can render producer-side fairness
criteria obsolete

In the literature on fairness in recommender and information re-
trieval systems, the presence of multiple stakeholders has motivated
a framework of multi-sided or multi-stakeholder fairness.
Definition 2. (Multi-sided fairness). A system achieves multi-
sided fairness if the model is fair with respect to each group of its
stakeholders, such as the consumers of its output (C-fairness), the
providers of its output (P-fairness), the consumers and providers
of its output considered together (CP-fairness), and the subjects of
the items that are being provided (S-fairness).

Stakeholders are typically divided into the consumers, providers,
and subjects of content in the system [1, 12, 21, 58]. For consumers—the
people or organizations who receive the recommendations—there
are many possible fairness targets [20, 22]; a common one is equity
of utility, in which different users or user groups should receive
comparably high-quality recommendations [24, 47, 64], which can
also be applied to many LLM use cases.

For subjects—the people or organizations who are portrayed
in the provided content—similar metrics may obtain and transfer
straightforwardly to the LLM content. For example, early in the
days of fairness in information access systems, it was noted that
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when searching for images of “CEO,” Google returned a set of
images largely depicting men with the first woman displayed being
“CEO Barbie.” However, as in the FTU decision of which sensitive
attributes a system should be unaware of and in what way, the
challenges of deciding subject representation in system output
are compounded in the LLM context. In general, it is not clear
what distribution of representation should obtain in the system,
and it is not clear how to estimate utility in order to achieve some
distribution of utility at scale. For example, there is an open question
of whether the target distribution should be equal representation of
men, women, and other genders or a distribution that is weighted
towards the gender distribution of CEOs in the consumer’s home
location [26, 35, 55].

For providers—the people or organizations whose content is
recommended—the target is often the equitable distribution of ex-
posure, either in terms of relevance-freemetrics that do not consider
the relevance of the content to the user, only that there is an equi-
table distribution, or relevance-based fairness metrics that target an
equitable exposure conditional on relevance. In any case, fairness
to providers is a matter of how the exposure of those providing
content to the system is allocated to consumers.

In the use case of LLMs for information retrieval and manage-
ment, this framework can at times transfer directly. For example,
if someone searches for “coffee shops in Chicago” in an LLM chat
or search interface, fairness could be defined in terms of equitable
exposure to the different brick-and-mortar coffee shops in Chicago.
Even if the LLM system does not direct users to particular web-
sites, many users will presumably end up visiting the cafes, which
provides utility—fairly or unfairly—to the providers.

If users are searching for information in the LLM system, such
as asking, “How are coffee beans roasted?” then LLMs can entirely
circumvent the providers and upend the conventional notion of
provider-side fairness. If the LLM extracts information from web-
sites without directing users to the original source content, then it
may be that none of the providers receive any exposure or other
benefits in the first place. One way to make sense of this would
be to consider the LLM system itself—or the entity that developed,
owns, and manages it—as another type of stakeholder, which is
taking all of the utility away from providers.

4 LLMS ARE TOO FLEXIBLE TO BE
GENERALLY FAIR

Much of the excitement about LLMs is based on their flexibility
across wide ranges of user input, tasks, contexts, and types of output.
This has led to a characterization as “foundation models” [11]. In
this sense, LLMs have become less like conventional models that
perform specific tasks and have instead moved in the direction
of large, automated repositories of information or like a human
agent or crowdworker that can be assigned downstream tasks. This
flexibility reduces the applicability of extant fairness frameworks
to the LLM itself.

4.1 Group fairness doesn’t generalize across
populations

Group fairness metrics require an independence between model
classification and sensitive attributes, often conditional on some

relevant context such as the ground-truth labels that the model
aims to predict. Three common metrics are:

Definition 3. (Demographic parity). A model achieves demo-
graphic parity if its predictions are statistically independent from
the sensitive attributes.

Definition 4. (Equalized odds). A model achieves equalized odds
if its predictions are statistically independent from the sensitive
attributes conditional on the true labels being predicted.

Definition 5. (Calibration). A model achieves calibration if the
true labels being predicted are statistically independent from the
sensitive attributes conditional on the model’s predictions.

In binary classification, these metrics are achieved when equal-
ities hold between ratios in the confusion matrix: equal ratios of
predicted outcomes (demographic parity), equal true positive rates
and equal false positive rates (equalized odds), and equal precision
(calibration). Recent work has also extended these notions to mini-
mizing the maximum group error rate to help the worst-off group
[17]. Conventionally, group fairness requires knowing the sensitive
attributes, though recent work has also considered approaches for
when the sensitive attributes are unavailable [34, 40, 71]. There are
a number of methods for enforcing group fairness metrics, such
as the pre-processing of datasets proposed by Feldman et al. [25]
to guarantee bounds on demographic parity and the more recent
method proposed by Johndrow and Lum [32] that works with a
wider variety of datasets.

LLMs present a challenge for group fairness metrics because
LLMs tend to be deployed across a wide range of data distributions.
Lechner et al. [41] rigorously showed that it is impossible to build
a non-trivial model that will perform fairly across all different data
distributions, such as regions or demographic groups, to which it
might be applied. This is a problem for fair regression and classifi-
cation in general. For example, in recidivism prediction, fairness
is assessed at a local level (e.g., counties in the U.S.) to ensure that
the model is performing fairly and appropriately for that location’s
particular demographic mix and characteristics. However, this im-
possibility is especially problematic for LLMs because of the wide
range of applications.

In general, it is not clear what an appropriate base population
would be on which to detect and achieve group fairness. For ex-
ample, one could “bootstrap” a predictive model for recidivism
prediction from an LLM simply by instructing it to make a predic-
tion about an individual based on a fixed set of that individual’s
characteristics with in-context learning, as the aforementioned Li
and Zhang [43] do in predicting the label of a text-converted tabular
dataset such as COMPAS. However, the LLM training data does
not provide a clear base population because it is not a structured
database comprised of people and their characteristics. An LLM
may be trained in part on such databases, but the output of the
model for such predictions will also be based on the wide scope of
unstructured natural language on which the model is trained.

Generalization across populations is also a concern for frame-
works other than group fairness because of the wide range of tex-
tual, application, and social contexts at play in LLMs [56]. Here, we
consider two examples: individual fairness [18] and counterfactual
fairness, which is the most common causal notion of fairness [38].
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Definition 6. (Individual fairness). A model achieves individual
fairness if similar individuals are treated similarly. Formally, this re-
quires that the distribution of model output is Lipschitz continuous
with respect to the distribution of model input.

Definition 7. (Counterfactual fairness). A model achieves coun-
terfactual fairness if the model would produce the same output for
an individual if they had a different level of the sensitive attribute.

In terms of individual fairness, it is not clear what similarity
metrics could be reasonably applied across so many different con-
texts—or if multiple metrics were applied, how these could be ju-
diciously selected and guaranteed in every possible context for a
single LLM. In terms of causal fairness, including counterfactual
fairness, it would be an immense challenge for a single model to ac-
count for all of the many different contextual factors that determine
counterfactuals or other causally distinct outcomes in different
populations. Again, these issues are not specific to LLMs, but they
present substantial issues for the idea of a “stamp” or “certificate”
of fairness for any model that is used in different populations, espe-
cially one with as little sense of a base population or an agreed-upon
standard as modern LLMs.

4.2 Sensitive attributes proliferate in a
general-use setting

The preceding section considered the challenges of imposing fair-
ness across different data distributions. When considering different
sensitive attributes, given the issues discussed in Section 3.1, it may
not be tractable to exclude sensitive attributes from the training
data. Each of the different distributions and different use cases can
require fairness metrics to be enforced for a different set of sensitive
attributes. This is a challenge for the group fairness metrics already
defined, but the issue is fundamental to the popular framework of
fair representations within the model or a representation produced
by one model and utilized by another [67].

Definition 8. (Fair representation). A representation is fair if it
does not contain information that can identify the sensitive at-
tributes of the individuals being represented.

In this framework, a machine learning system (e.g., classifier)
first maps the dataset of individuals to a probability distribution
in a new representation space, such that the system preserves as
much information as possible about the individual while removing
all information about the individual’s protected class. The most
well-known example of this approach is Bolukbasi et al. [10], which
rigorously documented gender bias in Google News word embed-
dings, namely an association between occupations and a gender
vector (i.e.., the dimension spanned from words like “men” on one
end to words like “women” on the other), such that computer pro-
grammer was coded as highly male while homemaker was coded as
highly female [10]. Indeed, this is where much of the NLP fairness
literature has focused, documenting many similar biases across
different word embedding models Sesari et al. [see 57, for a review].

That literature has developed debiasing approaches focused on
the sensitive attribute dimension in the semantic space (e.g., ®he −
®she), such as zeroing the projection of each word vector (e.g., each
occupation) onto the dimension itself [10] or training the model to

align the gender dimension with the last coordinate, so that it can be
easily removed or ignored [70]. However, Gonen and Goldberg [31]
argue that such approaches “are mostly hiding the bias rather than
removing it” because, even with the removal of such a dimension,
word pairs tend to maintain their similarity, which still reflects
associations with sensitive attributes—what Bolukbasi et al. [10]
call “indirect bias.”

In general, this presents a fundamental challenge for fairness in
LLMs or other general-purpose systems because achieving fairness
in one context may be contingent on the removal of information,
or alteration of the statistical relationships between the context-
specific sensitive attribute and other features of the data. For ex-
ample, one may wish to exclude gender information from financial
lending decisions, but gender information may be necessary for
other use cases, such as drafting or editing an email about a real-
world situation that has important gender dynamics that the sender
hopes to communicate to the receiver. Moreover, variables highly
correlated with gender, such as biological sex and pregnancy status,
may be essential criteria for medical decision-making. Attempts at
debiasing for one context may remove or distort important infor-
mation in another context.

The naive approach of debiasing the model with respect to the
union of all potential sensitive attributes—even if it is empirically
feasible—would likely be too heavy-handed, leaving the model with
little information to be useful for any task. To effectively create a
fair LLM for every task and context, one would need to act upon
the parameters of the model with surgical precision to alter the rela-
tionship between variables only when the model is instantiated for
a specific task and context. This is infeasible with current methods
of narrowing a model to focus on specific tasks, such as fine-tuning,
and currently we do not even have robust techniques to debias a
single problematic relationship without incidentally obfuscating it
or problematizing other relationships. The game of fairness whack-
a-mole seems intractable. Likewise, even if we could reduce the
union of all potential sensitive attributes to a manageable level,
such as identifying a small set of the most important to adjust for
in each use case, that would still require fine-grained adjustment
to avoid counterproductive spillover into other areas.

4.3 Fairness does not compose, but
fairness-directed composition may help

Whether a model’s behavior on a task is fair or desirable largely
depends on how that output will be used. The output of one model
is sometimes used as the input to another model, and fairness does
not compose: Even if we can guarantee one task is fair, if that output
is then plugged into another “fair” model, there is no guarantee
the ultimate outcome will be fair [19]. For example, we previously
referred to a popular benchmark dataset for assessing model bias,
WinoBias, which presents a coreference resolution task in which
models select one of two people to whom a pronoun most likely
refers. Because these sentences involve different occupations (e.g.,
doctor, nurse), most models are found to be biased in the sense
that they more readily associate the gendered pronoun with the
occupation for which that gender is more prevalent [69]. However,
even if a model that is determined to be fair by this metric or the
benchmark itself were used in training a model, such as a different
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model to summarize the sentences, there is no guarantee on the
fairness of the subsequent model’s output.

However, composition may be able to address some of the chal-
lenges of fairness in LLMs. The general-purpose capabilities of deep
neural networks could allow them to enforce fairness ideals in seem-
ingly intractable contexts. This is due to, first, the LLMs’ ability to
account for many patterns in data not immediately observable by
human model designers and, second, the instruction-tuning that
allows them to obey natural language input. Many advances in
LLM capabilities can be conceptualized as encouraging the model
to improve its own output. For example, chain-of-thought prompt-
ing [65] encourages the model to first produce text that takes an
incremental reasoning step towards its target. This can bolster per-
formance by allowing the later token generations to build on the
reasoning that the model has already generated, which has now
become part of its input. In terms of fairness and other ethical
issues, one can view many approaches to instruction tuning as a
composition of an ethics-driven model with the LLM. The most pop-
ular approaches, currently Reinforcement Learning from Human
Feedback [RLHF; 51] and Direct Preference Optimization [DPO;
54], compel the model to steer itself towards human-provided pref-
erence data, and some other approaches, such as Constitutional AI
[4] and SELF-ALIGN [60].

Model-assisted fairness strategies could take advantage of the
power and flexibility of LLMs to address their own shortcomings.
If the LLM itself has a sufficiently good internal representation
of the biases at play, it could be prompted to impose the chosen
fairness desiderata on its own output or that of another LLM. Of
course, this creates a substantial risk of overreliance in doubling
down on the blindspots of models, particularly those blindspots
that are not yet sufficiently well-understood or appreciated, such
that designers can guard against them. Recent approaches focus on
model “self-correction.” While there is skepticism that models can
currently do this well, Ganguli et al. [29] show impressive results on
bias and discrimination benchmarks “simply by instructing models
to avoid harmful outputs.” As LLM capabilities rapidly increase in
the coming years, approaches like these that allow us to leverage
those capabilities for fairness may allow us to make progress on
the inevitably labyrinthine ethical challenges that future models
will face.

5 PRINCIPLES
Over the past decade, the field of algorithmic fairness has developed
multiple technical frameworks for assessing the impact of machine
learning methods deployed in high-stakes domains. We argue that
current frameworks are insufficient for the critical task of assess-
ing the societal impact of deploying LLMs and do not believe it is
feasible to certify that an LLM is “fair,” in part because of inapplica-
bility of some frameworks to LLM use cases, including unstructured
natural language data, and in part because of the intractability of
enforcing fairness on flexible, general-purpose foundational models,
such as LLMs. Rather, mitigating harmful societal impacts from
LLMs will require deeper engagement with the real-world tasks and
contexts in which LLMs are ultimately used, as well as specific LLM
practices such as prompt engineering and applying interpretability
tools to the model.

For researchers evaluating societal impacts of LLMs, context is crit-
ical. A key strength of LLMs is that the same foundation model can
be fine-tuned for an endless number of applications and contexts.
Making meaningful statements about LLMs behaving fairly—even
if we can’t say that they are generally fair—will require articulating
connections to real use cases and corresponding harms. Fairness
evaluations must reflect the diversity of these contexts, expanding
beyond the nascent LLM fairness literature that has primarily fo-
cused on largely decontextualized, hypothetical, and ungrounded
tests. With the challenges in translating and composing fairness
across models and domains, it is unlikely that any “trick tests,”
such as coreference resolution of gendered pronouns, will provide
satisfactory evidence for or against LLM fairness. Proper contex-
tualization has been lacking for years in the fairness literature [9],
and the rise of LLMs increases its severity.

LLM developers are responsible for safe use and harm mitigation.
Fairness is necessarily a feature of end-to-end pipelines from model
design and training to model deployment and long-term conse-
quences. While users, regulators, researchers, and auditors have
historically been well-positioned to collect and evaluate data in
the later stages of this pipeline, there are substantial challenges in
understanding and managing the earlier stages. LLM developers
have a responsibility to empower stakeholders to assess fairness of
LLM-based applications in these varied contexts. Most immediately,
for researchers and other third parties to move beyond ungrounded
prompts and contexts, companies that deploy LLMs, such as Ope-
nAI and Google, must release far more information on actual usage
and how the systems respond to real prompts from real users than
is currently done [13]. LLM developers also have a responsibility to
support these efforts through technical training, tools to facilitate
evaluation of specific use cases, and other resources. Developers
are still on the hook for mitigating harm—not downstream users
and other stakeholders.

Managing the societal impact of LLMs will require iterative and
participatory design and evaluation. Given the many different con-
texts in which these systems can be used, many with conflicting
desiderata for defining fairness, we think it is impossible to make a
generally “fair” LLM. Rather, LLM developers must work closely
with third-party researchers, policymakers, end users, and other
affected stakeholders in a participatory process that audits algo-
rithms in the contexts in which they are used and mitigate any
harmful effects, just as with any other widely deployed technology.
Given the novel challenges of LLMs, the amplification of existing
challenges, and the inevitable future developments, this process
must also be iterative with frequent trials and assessments of new
approaches to identifying and mitigating harm. While we are skep-
tical of many current approaches, there is still ample room and a
strong imperative for responsible AI development and achieving
fairness in particular use cases. In short, even though this prob-
lem is difficult, we believe addressing it is essential for responsible
LLM development and deployment. With an iterative approach
grounded in the nature of LLMs and real-world use, we believe that
substantial progress could be made in a relatively short period of
time.
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