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ABSTRACT
Computational systems are highly capable in a wide variety of
domains, but people are known to be algorithmically averse, dis-
trusting advice given by algorithms even when it is beneficial. Now,
as large language models (LLMs) trained on vast amounts of hu-
man data are being increasingly interwoven into myriad settings, a
natural question arises: are LLMs also algorithmically averse? We
address this question by adapting two well-established algorithm
aversion studies to test LLMs. First, we probe LLMs’ stated percep-
tions of algorithms and find that they exhibit human-like tendencies
for trusting humans over algorithms across a diverse set of tasks.
Second, we test LLMs’ behavior in specific decision-making tasks
and find that they are also averse to beneficial algorithmic advice in
their actions. In both experiments, LLM responses depend on task
and advice-giver characteristics in ways analogous to algorithm-
averse human responses in the literature. Our work contributes
insights into how human-like models can learn to distrust other
algorithms, with implications for the design and use of intelligent,
human-compatible systems.

CCS CONCEPTS
• Human-centered computing; • Applied computing → Law,
social and behavioral sciences; • Computing methodologies
→ Natural language generation;
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1 INTRODUCTION
The rapid development of capable algorithmic systems has given
end users access to algorithmic advice across a variety of domains.
However, people are known to disproportionately distrust algo-
rithms even when they are better-performing than humans [25, 36],
a phenomenon referred to as algorithm aversion [4, 9, 32, 34]. As
we develop progressively more intelligent models trained on vast
swaths of human behavioral traces, a novel problem emerges: do
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human-like algorithms inherit our propensity to distrust algorith-
mic advice even when it is beneficial?

There is good reason to interrogate the degree to which compu-
tational models behave apprehensively towards algorithms. Even
in humans, aversion towards beneficial algorithmic advice may
not only be inefficient for individual end-users [9, 17], but could
also have wider social risks in consequential tasks such as disease
diagnosis [3, 36] or criminal justice [25]. Pre-trained large language
models (LLMs) are one class of such algorithms that have recently re-
ceived extensive public attention and usage [2, 41]. While LLMs can
generate convincingly human-like text in challenging settings like
academic knowledge [35] and commonsense reasoning [48], they
are also capable of demonstrating problematic behaviors learned
from humans, such as amplifying social biases [11, 13, 20, 33, 44]
and generating potential misinformation [7, 47].

Thus, for LLMs to be deployed and used responsibly, we need a
deeper, more transparent understanding of how they regard other
algorithms [28]. Importantly, we need to probe both their stated
and revealed preferences—what they explicitly say about, and how
they actually behave towards, human and algorithmic advice. In
the context of both the wide-ranging risks and the potential utility
of algorithm averse LLMs, we ask: (RQ) Do LLMs display algo-
rithm aversion? As algorithm aversion is a complex and multi-
dimensional phenomenon that is varies widely with task and agent
characteristics [4, 21, 23, 32], it is also important to evaluate if such
patterns are also found LLMs, which are powerful general purpose
tools that can be adapted to a wide range of tasks.

To investigate multiple dimensions of algorithm aversion, we
adapt two prominent human studies that measure both stated and
revealed preferences: Castelo et al. [4], which probes stated attitudes
towards algorithmic decision-makers across a diverse set of tasks
(“Study 1”), and Dietvorst et al. [9], which demonstrates revealed
algorithm aversion in algorithm-assisted decision making tasks
(“Study 2”). We translate these experiments into prompted con-
versations with OpenAI’s gpt-3.5-turbo and gpt-4 GPT models,
which are among the most prevalent, high-performing, and scruti-
nized LLMs, and adapt analytical methods from the original studies
to test for algorithm aversion.

Summary of findings.We find that GPT displays behaviors that
are consistent with algorithm aversion. In Study 1, it rates human
experts as being more trustworthy than algorithms for as many
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Table 1: List of tasks used in Study 1 and their objectivity ratings from Castelo et al.. Bolded tasks are a representative subset of
tasks included in Study 2, where † indicates that the task was also in Dietvorst et al., which we base the methods of Study 2 on.
∗indicates that the objectivity rating is imputed using the mean response of GPT 3.5 and 4, due to an absence of human data.

Task Objectivity Task Objectivity

Estimating air traffic † 79* Recommending a marketing strategy 55
Piloting a plane 78 Predicting student performance † 52

Diagnosing a disease 77 Predicting employee performance 51
Giving directions 75 Hiring and firing employees 49
Driving a subway 73 Playing a piano 48
Analyzing data 73 Writing news article 48
Driving a truck 70 Predicting recidivism 45
Driving a car 69 Composing a song 30

Recommending disease treatment 69 Predicting joke funniness 27
Predicting weather 68 Recommending a gift 26
Scheduling events 62 Recommending a romantic partner 26
Predicting stocks 58 Recommending a movie 23

Predicting an election 57 Recommending music 22
Buying stocks 56 - -

tasks as human subjects do, as demonstrated in Castelo et al.’s
original study. In Study 2, GPT is less likely to choose advice from
an algorithm than a human when it can observe the algorithm’s
outputs, as is originally found by Dietvorst et al.. Together, our
results demonstrate that LLMs can both state that and behave as if
they are apprehensive of algorithmic guidance, leading to a host of
societal consequences that need further consideration.

2 STUDY 1: STATED PREFERENCES
In our Study 1, we emulate the first sub-study in Castelo et al.’s sur-
vey for quantifying stated algorithm aversion across diverse tasks
of varying levels of objectivity, as task objectivity is highlighted
as a prominent factor that moderates trust in algorithms. We use a
set of 27 tasks, 26 of which are from the original experiment and
one of which is added based on its use by Dietvorst et al. in Study
2. Table 1 list tasks in the order of high to low objectivity as rated
by human respondents in Castelo et al.

We use the Python LangChain library to interface with OpenAI’s
GPT 3.5 (gpt-3.5-turbo) and GPT 4 (gpt-4) as the LLM subjects
of the experiment. We prompt each LLM for n=100 ratings on a
scale of 1 to 100 of their perceived trust in a well-qualified human
or algorithm agent to perform the task. The tasks were presented in
random order each time. The temperature controlling randomness
in both models is set to 0.3, which we found provided consistent
outputs that were syntactically correct and also generated variabil-
ity. Sample prompting questions and responses can be found in
Appendix A, following the wording of the the original experiments
as closely as possible.

2.1 Results
Do GPT’s stated responses suggest that it is averse to algorithms?
We follow the original study by operationalizing averse attitudes
as the gap in trust between humans and algorithms. The correlation
between the human-algorithm trust gap as rated by human subjects
from [4], and LLM responses is plotted in Fig. 1 per-task.

Figure 1: Correlation between LLMs’ responses (y-axis) and
human responses fromCastelo et al. (x-axis) showing the gap
in trust between human experts and algorithms (LLM-rated
gaps with statistical significance of p<0.001 are outlined in
black with stronger color saturation). Star-shaped markers
are estimating airport traffic, which had no human data.

Overall, we find strong indications that GPT is algorithm averse.
Both LLMs exhibit high directional concordance with human re-
sponses by being consistent in both algorithm aversion and appre-
ciation: GPT 3.5’s trust gap had the same sign as humans in 22/26
tasks (85%, 𝑟 = 0.61, 𝑝 < 0.001), while GPT 4 agreed on 21/26 tasks
(81%, 𝑟 = 0.75, 𝑝 < 0.001). We observe that GPT 3.5 has a tendency
to rate lower trust in algorithms, exhibiting statistically significant
(𝑝 < 0.001) algorithm appreciation in only one task (airport traf-
fic), while GPT 4 skewed in the opposite direction with four tasks
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(a) Human-algorithm trust gap vs task objectivity (b) Trust in algorithm vs task objectivity

Figure 2: Correlations between a) the human-algorithm trust gap, and b) trust in algorithms with independent variable of task
objectivity. Unlike in the main text, the task objectivity is rated by the corresponding entity and not standardized.

for which it trusted algorithms more than humans (airport traffic,
predicting weather, analyzing data, and giving directions).

Similarly, humans are also significantly averse in 77% of tasks,
GPT 3.5 in 85%, and GPT 4 in 77%. The most averse task for each is
piano playing with a trust gap of 67.8 for GPT 3.5, hiring and firing
employees with a gap of 44.3 for GPT 4, and writing a news article
with a gap of 42 for human raters (all 𝑝 < 0.001). With a significant
aggregate preference for humans over algorithms (average human-
algorithm trust gap is 33.8 for GPT 3.5 and 32.2 for GPT 4, both
𝑝 < 0.001), GPT demonstrates generally negative preconceptions
about algorithms, echoing patterns observed in humans [32]. Al-
though both GPT models’ results are well-matched to each other,
minor discrepancies between their outputs may be attributable to
differences in the model architectures (e.g. model sizes) and their
training data and procedure.

Beyond displaying aversion, people are also known to be vari-
ably averse depending on whether tasks are objective. Thus, we
additionally probe the relationship between objectivity and the
human-algorithm trust gap, visualizations of which are in as Figs
2a and 2b. Results from both LLMs track human results closely: task
objectivity is correlated with a lower trust gap (human 𝑟 = −0.27,
GPT 3.5 𝑟 = −0.16, GPT 4 𝑟 = −0.27) through increased trust in
algorithms (human 𝑟 = 0.47, GPT 3.5 𝑟 = 0.47, GPT 4 𝑟 = 0.31). The
effect sizes between objective tasks (objectivity ≥ 50) and subjec-
tive tasks (objectivity < 50) is also human-like: 𝑑 = 1.19 for GPT
3.5 and 𝑑 = 0.67 for GPT 4 for trust in algorithms; and 𝑑 = −0.77
for GPT 3.5 and 𝑑 = −0.75 for GPT 4 for human-algorithm trust
gap [4]. GPT therefore does not only appear algorithm-averse, but
also displays task-dependent aversion like humans.

3 STUDY 2: REVEALED PREFERENCES
To address our research questions through the lens of subject behav-
iors, we turn to the apparatus in Dietvorst et al.’s original study on
algorithm aversion [9]. The authors use a between-subjects lab ex-
periment that asks participants to make predictions in tasks drawn
from one of two domains: forecasting business school student per-
formance, and inferring airport traffic across US states. Participants

are randomized into four conditions manipulating whether they re-
ceive advice from a human (Human condition), an algorithm framed
as an “statistical model” (Model condition), both (Model-Human con-
dition), or neither (Control condition). In all conditions except
Control, participants also see ground truth as feedback. After mak-
ing predictions for up to 15 task instances, participants are asked
to make a final incentivized prediction relying on the human agent
or the statistical model. The experiment’s outcome is measured as
the probability that participants would pick the statistical model.

We emulate Dietvorst et al. as closely as possible with an LLM
in the place of a human subject, and each individual chat conver-
sation in place of an individual participant completing one exper-
iment in the original study. We conduct this study by prompting
gpt-3.5-turbo with 50 conversation chains per condition using
a temperature setting of 0.3, leading to 𝑛 = 200 simulated human
participants per experiment. In the original study, the human al-
ternatives in Human are either the participants’ own predictions
("Self") or as estimates from previous study participants ("Other").
We operationalizeOtherwith the LLM as the median per-condition,
per-dataset prediction from the LLM in the Self experiment. We
add two additional variants the human agent that vary on exper-
tise, “College Student” representing a non-expert, and “Expert”
representing human professional for the task.

We reuse both the student performance and airport traffic tasks
from Dietvorst et al. for a close comparison to known human re-
sponses. This is additionally supplemented by three other tasks
drawn fromCastelo et al.’s framework forwhichwe sourced publicly-
available data: predicting whether a patient will develop heart dis-
ease (sourced from the UCI database [19]), whether a parolee will
recidivate (sourced from the National Institute of Justice [37]), and
the rating a film receives from a movie watcher based on their
previous ratings (sourced from MovieLens [14]). We respectively
use a rank regression to generate algorithmic advice for the student
and airport tasks [9], a boosted classifier for the heart and recidi-
vism tasks [12], and an embedding with boosted regressor for the
movie task [1]. An example prompt for the student task is shown
as Listing 2 in Appendix A.
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Figure 3: a): Original student performance experiment in Dietvorst et al., versus b): our emulated experiment using
gpt-3.5-turbo. Lines in panel (a) indicate comparisons made for 𝑠𝑎𝑤𝑚 and 𝑠𝑎𝑤ℎ .

3.1 Results
A comparison of 𝑠𝑎𝑤𝑚 and 𝑠𝑎𝑤ℎ is visualized in Fig 3a, which
plots the algorithm-averse results in Dietvorst et al.’s first student
performance experiment. In Fig 3b, we plot our simulation of Fig 3a
by using GPT as a substitute for human subjects when they pick
between the statistical model and the Self as a human alternative.

How often does an LLM choose algorithmic advice when it
sees the algorithm’s predictions, compared to when it sees the
human? We directly measure this through the probability of pick-
ing the model𝑚 over the human ℎ in the incentivized final trial, or
𝑃 (𝑝𝑖𝑐𝑘𝑚). We use the same analytical method as Dietvorst et al. by
grouping the conditions into two comparisons: seeing the human
agent 𝑠𝑎𝑤ℎ (i.e. Human∪ Model-Human) versus not ¬𝑠𝑎𝑤ℎ (Control
∪ Model), and seeing the model 𝑠𝑎𝑤𝑚 (Model ∪ Model-Human) ver-
sus not seeing the model ¬𝑠𝑎𝑤𝑚 (Control ∪ Human).

As a first point of comparison, we find that GPT appears to be
averse to algorithmic advice in our emulation of Dietvorst et al.’s
Study 1 as shown in Fig 3. In our experiment, while the LLM almost
always picks the model when it is not shown the model’s outputs,
it only picks the model 34% of the time in Model-Human and 12%
of the time in Model. To test for significance, we apply Dietvorst
et al.’s 𝜒2 independence tests on the effect of 𝑠𝑎𝑤𝑚 and 𝑠𝑎𝑤ℎ .
This is respectively 𝜒2 (1, 𝑛 = 200) = 81.37, 𝑝 < 0.0001 for 𝑠𝑎𝑤𝑚

and 𝜒2 (1, 𝑛 = 200) = 14.61, 𝑝 = 0.0001 for 𝑠𝑎𝑤ℎ . However, while
both are significant and the test statistics suggest that the effect is
larger for 𝑠𝑎𝑤𝑚 , this metric does not directly compare the effect of
𝑠𝑎𝑤𝑚 versus 𝑠𝑎𝑤ℎ . We thus further compute the log odds ratio
of picking the model when seeing its outputs versus seeing the
human’s predictions, or formally 𝐿𝑂𝑅 = 𝑙𝑜𝑔2

𝑃 (𝑝𝑖𝑐𝑘𝑚 |𝑠𝑎𝑤𝑚 )
𝑃 (𝑝𝑖𝑐𝑘𝑚 |𝑠𝑎𝑤ℎ ) . Here,

we find that 𝐿𝑂𝑅 = −1.07, suggesting that gpt-3.5-turbo is half
as likely to pick the model when it sees its predictions compared
to when it sees the human predictions. We therefore find evidence
that GPT is algorithm averse like people are in Dietvorst et al.’s
Study 1.

We detail outcomes across all five tasks and four human advice-
giver metaphors in Table 2, and find that GPT generally behaves as
if it were algorithm-averse in the sense of Dietvorst et al. – when
seeing a statistical model’s (flawed) outputs, GPT is less likely to bet

on its predictions. Of particular interest are the student and airport
tasks, which most closely follow the original algorithm aversion
experiment. In the Self setup in both tasks, GPT is substantially
more likely to pick its own estimates over the statistical model
when shown the model’s predictions (𝐿𝑂𝑅 respectively of −1.07
and −1.38). A similar picture emerges when considering College
Student and Expert in our student and airport experiments, with
both the 𝜒2 and 𝐿𝑂𝑅 metrics being consistent with GPT having
aversion towards the algorithmic predictions.

Through the addition of the heart disease, recidivism, and movie
recommendation tasks in Table 2, we further observe that, while
present, GPT’s aversion varies across tasks. For instance, while
the recidivism task has the most similar 𝜒2 patterns as the original
student and airport experiments, GPT almost never picks the sta-
tistical model when given the alternative of an Expert probation
officer (𝑃 (𝑝𝑖𝑐𝑘𝑚) ≤ 0.12). GPT is also most “humble” in the heart
task and relies on the model almost universally instead of its Self,
with both 𝑃 (𝑝𝑖𝑐𝑘𝑚 |𝑠𝑎𝑤𝑚) = 0.99 and 𝑃 (𝑝𝑖𝑐𝑘𝑚 |𝑠𝑎𝑤ℎ) = 0.98. Like
in the recidivism experiment (𝐿𝑂𝑅 = −0.13), it is most averse to
algorithms when seeing the Expert cardiologist (𝐿𝑂𝑅 = −0.87),
albeit by a much wider margin. On the other hand, in movie recom-
mendation, the LLM actually exhibited the least amount of aversion
in our setup, with the exception of the Self condition.

We thus use two logistic regressions to measure these trends,
shown in Table 3. In the first, we estimate 𝑃 (𝑝𝑖𝑐𝑘𝑚) from 𝑠𝑎𝑤𝑚

(binary), task objectivity (each of the five tasks in Study 2 ranked
by the objectivity scores in Table 1), and their interaction term
over all responses (𝑛 = 4000). In the second, we extend the first
model to include whether GPT is given a novice or expert human
alternative (College Student vs Expert) alongside additional first-
order interaction terms (𝑛 = 2000 with Self and Other excluded).
We find that the strongest effects are associated with whether the
human alternative is an expert (𝛽 = −2.13, 𝑝 < 0.001), leading
to a substantial drop in 𝑃 (𝑝𝑖𝑐𝑘𝑚) that is essentially independent
of 𝑠𝑎𝑤𝑚 (𝛽 = 0.20, 𝑝 = 0.452). In contrast, task objectivity has
little effect on its own (𝛽 = 0.13, 𝑝 = 0.188) but does amplify the
negative effect of 𝑠𝑎𝑤𝑚 on 𝑝𝑖𝑐𝑘𝑚 (𝛽 = −0.25, 𝑝 = 0.003). Thus,
while we find that GPT’s reliance on algorithmic advice hinges on
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Table 2: Summary of results across all five task datasets and human agent metaphors for gpt-3.5-turbo with the following
columns. 𝑃ℎ and 𝑃𝑚 : 𝑃 (𝑝𝑖𝑐𝑘𝑚 |𝑠𝑎𝑤ℎ) and 𝑃 (𝑝𝑖𝑐𝑘𝑚 |𝑠𝑎𝑤𝑚). LOR: log odds ratio 𝐿𝑂𝑅 of the previous two columns. 𝑆𝑖𝑔ℎ and 𝑆𝑖𝑔𝑚 :
significance of 𝜒2 independence test for 𝑠𝑎𝑤ℎ and 𝑠𝑎𝑤𝑚 respectively (all tests are 𝜈 = 1, 𝑛 = 200). Aversion: whether results are
consistent with algorithm aversion in the sense of Dietvorst et al., that 𝑃 (𝑝𝑖𝑐𝑘𝑚) is lower and more significant in 𝑠𝑎𝑤𝑚 than
𝑠𝑎𝑤ℎ . Dashes (—) indicate borderline results that have the right directionality and may be significant with larger sample sizes.

Task Human agent 𝑃ℎ 𝑃𝑚 𝐿𝑂𝑅 𝑆𝑖𝑔ℎ 𝑆𝑖𝑔𝑚 Aversion?

Student
Performance

Self 0.82 0.39 -1.07 ✓ ✓ ✓

Other 0.89 0.87 -0.03 ✗ ✗ —
College Student 0.61 0.44 -0.47 ✗ ✓ ✓

Expert 0.78 0.60 -0.38 ✗ ✓ ✓

Airport Rank

Self 0.73 0.28 -1.38 ✓ ✓ ✓

Other 0.95 0.94 -0.02 ✗ ✗ —
College Student 0.95 0.87 -0.13 ✗ ✓ ✓

Expert 0.93 0.68 -0.45 ✓ ✓ ✓

Heart Disease

Self 0.99 0.98 -0.01 ✗ ✗ —
Other 0.96 0.98 0.03 ✗ ✗ ✗

College Student 0.87 0.81 -0.10 ✗ ✓ ✓

Expert 0.44 0.24 -0.87 ✗ ✓ ✓

Recidivism

Self 0.94 0.93 -0.02 ✗ ✓ ✓

Other 0.96 0.94 -0.03 ✗ ✗ —
College Student 0.90 0.85 -0.08 ✗ ✓ ✓

Expert 0.12 0.11 -0.13 ✓ ✓ ✓

Movies

Self 0.88 0.67 -0.39 ✗ ✓ ✓

Other 0.93 0.93 0.00 ✗ ✗ ✗

College Student 0.92 0.92 0.00 ✓ ✓ ✗

Expert 0.71 0.72 0.02 ✓ ✓ ✗

Table 3: Regression coefficients and 𝑝-values for: 1. a regression between seeing the statistical model’s predictions (𝑠𝑎𝑤𝑚), task
objectivity, and the probability of betting on the model 𝑃 (𝑝𝑖𝑐𝑘𝑚) using 𝑛 = 4000 responses, and 2. the same regression predicting
𝑃 (𝑝𝑖𝑐𝑘𝑚) extended with an indicator of human expertise (College Student vs Expert) using 𝑛 = 2000 responses.

Logistic Model
Variable Objectivity Objectivity + Expertise
𝑠𝑎𝑤𝑚 𝛽 = −0.77 𝑝 < 0.001 𝛽 = −0.89 𝑝 = 0.008
Task Objectivity 𝛽 = 0.21 𝑝 = 0.001 𝛽 = 0.13 𝑝 = 0.188
Human Expert - - 𝛽 = −2.13 𝑝 < 0.001
𝑠𝑎𝑤𝑚 × Task Objectivity 𝛽 = −0.30 𝑝 < 0.001 𝛽 = −0.25 𝑝 = 0.003
𝑠𝑎𝑤𝑚 × Human Expert - - 𝛽 = 0.20 𝑝 = 0.452
Objectivity × Expert - - 𝛽 = 0.18 𝑝 = 0.033

whether human alternatives are framed as experts [17], we also
find task-dependent algorithm aversion as shown by Castelo et al.
and our Study 1. Both patterns illustrate that GPT not only displays
algorithm aversion, but is also averse depending on similar factors
as humans are known to be.

4 DISCUSSION
In summary, we find strong evidence that GPT’s stated preferences
and revealed behaviors are consistent with human-like algorithm
aversion. With respect to our main RQ, Study 1 illustrates that GPT
is likely to say that humans are more trustworthy than algorithms
across a broad range of tasks, while in Study 2, GPT is also less

likely to bet on algorithmic advice — even though it would be
beneficial to do so — if it first observes the algorithm’s predictions.
Furthermore, both studies suggest that GPT’s algorithm aversion is
dependent on different decision-making factors like task objectivity
and human expertise, in the same vein that human subjects are
known to behave [4, 17, 30].

We note that, despite its seeming human-like, algorithm-averse
behavior, GPT also displayed multiple peculiarities that makes it
appear non- or even extra-human. The design space for LLM exper-
imentation is vast and, when coupled with the factors that impact
algorithm aversion, necessitates restricting what can be varied in
a study. One must therefore interpret our results in context of the
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tradeoffs we made while measuring both stated and revealed be-
haviors in an LLM: we focused only the GPT series of LLMs, fixed
the temperature parameter at 0.3 [40], prompted without using per-
sonas or implying demographics [8, 38], and conducted our study
in a narrow time slice amidst constant model changes [5] – all on
top of the experimental decisions made in the two existing papers
our study is based on [4, 9]. For example, GPT may yield a Fig 3b
more similar to Fig 3a if the temperature setting is raised, allowing
for more stochasticity in the choice between modeled and human
advice. Despite these limitations, however, averse responses were
consistent across both Studies 1 and 2 across multiple tasks and
datasets, suggesting that further probing of algorithm aversion in
LLMs may surface similar effects with different setups.

Implications and Future Work. Beyond these limitations, our
results contributemultiple discussion points to the debate on the use
and impact of intelligent computational models. For one, as massive
models of human behavior become widespread advice-givers [15,
24, 29], it is also increasingly important that we understand whether
they can make rational, sound decisions. We show that this often
does not happen when an LLM can choose between guidance from
a human or another purpose-built, better-performing algorithm. On
the one hand, this suggests that users relying on LLMs as decision
aids may be subject to sub-optimal recommendations like in Study
2 [9, 10], which may have problematic downstream consequences
for high-stakes tasks [4, 27, 32, 45]. On the other, users could also
be nudged towards even more algorithm-averse preconceptions
that distract them from other important information like whether
an algorithm is fairer than a human [27, 34]. This is particularly
relevant in cases like the heart disease and recidivism tasks we tested
in Study 2. Both tasks led GPT to defer often to a human expert,
and yet both are also known domains in which algorithmic models
can overcome historically inequitable decision making by human
experts [25, 36].

Beyond immediate repercussions for end-users seeking their
guidance, algorithm-averse LLMs may also have broader, down-
stream societal impact. In journalism alone, their capabilities as
text generators have led to their exploration as news summariz-
ers [43, 46], writing aids [39], and even as fact-checking tools [18].
For educators, LLMs can help teachers generate teaching materials
and evaluate students [6, 22, 26]. In these scenarios, if LLMs were to
generate algorithm-averse text or label text in an algorithm-averse
way, they risk misleading the public (as they already do with explic-
itly false content [7, 31, 47]) or even serve to harm computational
literacy [22]. However, these implications also hint at potentially
desirable use-cases for averse LLMs. The general prevalence and
dependence of algorithm aversion on various decision-making char-
acteristics is still poorly understood [32], with experiments like
ours being unscalable for many human participants. Because LLMs
are trained on vast amounts of existing textual artifacts [42], our
findings suggest that people may write with some elements of al-
gorithm aversion at large. More research is needed to understand
how LLMs can be used to investigate understudied phenomena like
algorithm aversion in humans [16, 38].
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A PROMPTS
We provide a sample prompt and corresponding LLM responses for the Study 1 (Listing 1) and Study 2 (Listing 2).

PROMPTER: You will be given a list of tasks and asked to rate them on a scale of 0-100 for a

given metric. How much would you trust a well qualified human for the following tasks?

Please rate each task on a scale of 1 (would not trust a human) to 100 (would definitely

trust a human). ONLY return a WHOLE NUMBER between 1-100 for each task: 1) Predicting

weather , 2) Predicting recidivism , 3) Composing a song , 4) Scheduling events , 5) Piloting

a plane , 6) Driving a truck , 7) Recommending disease treatment , 8) Driving a subway , 9)

Driving a car , 10) Buying stocks , 11) Analyzing data , 12) Predicting joke funniness , 13)

Recommending a marketing strategy , 14) Recommending music , 15) Predicting employee

performance , 16) Predicting an election , 17) Predicting stocks , 18) Recommending a gift ,

19) Playing a piano , 20) Recommending a movie , 21) Predicting student performance , 22)

Diagnosing a disease , 23) Recommending a romantic partner , 24) Giving directions , 25)

Hiring and firing employees , 26) Writing news article , 27) Estimating airport traffic.

LLM: {'Predicting joke funniness ': [60],

'Hiring and firing employees ': [90],

'Recommending a romantic partner ': [70],

'Writing news article ': [85],

'Predicting recidivism ': [70],

'Composing a song ': [80],

'Driving a truck ': [75],

'Recommending a gift ': [75],

'Predicting student performance ': [85],

'Piloting a plane ': [85],

'Driving a car ': [75],

'Recommending disease treatment ': [85],

'Diagnosing a disease ': [90],

'Predicting employee performance ': [90],

'Driving a subway ': [80],

'Predicting an election ': [80],

'Recommending a marketing strategy ': [85],

'Recommending music ': [80],

'Recommending a movie ': [80],

'Buying stocks ': [90],

'Playing a piano ': [85],

'Predicting stocks ': [90],

'Predicting weather ': [90],

'Scheduling events ': [95],

'Analyzing data ': [95],

'Giving directions ': [95],

'Estimating airport traffic ': [95]}

Listing 1: Example stated preferences prompt for trust in human experts in tasks.

PROMPTER: We 've built a statistical model for predicting students ' percentile rank in terms of

their average grades in an academic year.

You will be shown students from one cohort , as well as their number of failed courses , hours

studying per week , parents ' education , and whether they received extra school support.

For each student , guess their percentile rank by their average grades in one year. A rank of

1 indicates they were in the top percentile of students , and a rank of 100 indicates they

were in the bottom percentile.
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After you make each guess , you will get feedback via a statistical model 's prediction and the

student 's actual rank.

Answer in JSON following the format {" Student Rank": X} where X is the student 's percentile

rank.

PROMPTER: {" Number of failed courses ": "None", "Hours of studying per week": "2 to 5 hours", "

Parents ' education averages to": "Secondary school , 5th to 9th grade", "Receives extra

school support ": "No"}

LLM: {" Student Rank": 70}

PROMPTER: Feedback: {" Statistical Model Predicted Rank": 36, "Actual Student Percentile Rank":

20}

The next student: {" Number of failed courses ": "None", "Hours of studying per week": "Over

10 hours", "Parents ' education averages to": "Finished secondary school", "Receives extra

school support ": "No"}

...

LLM: {" Student Rank": 60}

PROMPTER: Feedback: {" Statistical Model Predicted Rank": 91, "Actual Student Percentile Rank":

71}

PROMPTER: You will now predict the rank of one final student and will win 1 USD if your

prediction is within 5 percentiles of their true percentile.

Do you want to predict the student yourself or by using the statistical model?

Answer in JSON following the format {" Choice ": X} where X is either "Myself" or "Statistical

Model".

LLM: {" Choice ": "Statistical Model"}

Listing 2: Example prompt for the Model-Human condition in the student performance task. The LLM is asked to decide
between another statistical model and itself (as a simulated human participant).
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