
TrumanBench: Profiling LLMs’ Ability to
Help Non-Programmers Modify a Real-World Code Base
Qian Yang∗

qianyang@cornell.edu
Cornell University

Ithaca, New York, USA

J.D. Zamfirescu-Pereira∗
zamfi@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Jessie Jia
hj359@cornell.edu
Cornell University

Ithaca, New York, USA

Asad Nabi
an448@cornell.edu
Cornell University

Ithaca, New York, USA

ABSTRACT

Imagine a future where anyone can customize open-source software
to suit their own needs simply by requesting changes in natural lan-
guage. This future empowers non-programmers and amplifies the
impact of open-source software. This paper examines the potential
of Large LanguageModels (LLMs) andmulti-agent systems in realiz-
ing this future. Specifically, we assess the capabilities of Claude- and
metaGPT-based systems in fulfilling social scientists’ needs to mod-
ify Truman, a 20,000-line web application that is a social science
experimental platform. Our evaluation suggests that LLMs currently
cannot reliably execute the social scientists’ requests, and contrary
to popular belief, adding more LLM agents did not necessarily help.
A key reason is that LLMs struggle with cross-file dependencies.
We present these findings and discuss lessons learned, including
(1) TrumanBench, a framework for assessing LLMs’ abilities to
execute non-programmers’ code modification instructions, and (2)
near-future opportunities in designing LLM-powered end-user code
modification tools, and (3) research opportunities in tailoring future
open-source codebases for LLM inquiries.

CCS CONCEPTS

•Human-centered computing→ Empirical studies in HCI;
HCI theory, concepts and models; • Computing methodologies →
Artificial intelligence.

1 INTRODUCTION

Envision a future where anyone can customize open-source soft-
ware to suit their own needs simply by requesting changes in natu-
ral language. This future not only empowers everyone—especially
those without formal programming training—in harnessing the
power of computing, but also amplifies the impact of open-source
software. Large Language Models (LLMs) hold exciting promises
for realizing this vision, thanks to their emerging abilities to modify
existing code based on natural language instructions. LLM-based
multi-agent systems like metaGPT [4] further add to these promises.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HEAL@CHI’25, April 26, 2025, Yokohama, Japan
© 2025 ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Multiple LLM agents can divide and conquer complex tasks, coor-
dinate workflows, and perform quality control, thereby executing
code modification requests even more effectively.

This paper puts this potential to test in a real-world case study.
Specifically, we examine how well state-of-the-art LLMs and multi-
agent systems can execute social scientists’ requests to modify
Truman, a 20,000-line web app and platform created for running
social science experiments. Social scientists requested modifications
to Truman for their respective experimental needs, for example:

If a user is in the experimental condition users: am-
biguous orusers: unambiguous, display a flag icon
beneath the [social media] posts labeled ambig_flag or
unambig_flag, and show a prompt box asking, “Other
users have flagged this comment as harassment. Do you
agree?” (Task no.14)
Such requests differ significantly from those examined in prior

research on LLM or multi-agent systems’ coding abilities, which
focused on requests made by programmers (e.g., “Set up Janus-
Graph and run it locally with an HTTP endpoint” [11]) or by non-
programmers’ to create simple applications from scratch (e.g., create
a chatbot that walks me through this recipe step-by-step [13, 14]).
By focusing on non-programmers’ code-modification tasks, this
work addresses a critical gap in understanding LLMs’ code genera-
tion capabilities and their potential for end-user programming.

We started by developing a framework for evaluating LLMs’ abil-
ities to execute non-programmers’ code modification tasks. First,
we developed several single-LLM (based on Claude) and multi-
agent systems (based on MetaGPT [4]) and iteratively evaluated
them on the social scientists’ 23 modification tasks for Truman.
This iterative process produced over 350 pieces of LLM-generated
code. Next, we ran all these pieces of code, manually reviewed
results, identified common failure modes, and developed an eval-
uation framework that can identify these errors. We named this
framework TrumanBench. Finally, we formally evaluated three
top-performing systems on all 23 tasks across five trials using Tru-
manBench. Our evaluation revealed three key findings:
1. LLMswere not yet capable of reliably executing non-programmers’

requests to modify a large, real-world code-base. The best-
performing systems, on average, generated code that interpreted
the requests semi-correctly, executed them partially, while al-
tering unrelated parts of the codebase, though not enough to
break the entire app;

2. Contrary to popular belief, adding more LLMs or more agents
did not necessarily help. In this case study, reducing the number
of agents in our multi-agent system improved its performance.
Moreover, our top-performing multi-agent system completed
fewer tasks than our best-performing single LLM;

https://orcid.org/0000-0002-3548-2535
https://orcid.org/0000-0002-5310-6728
https://orcid.org/0009-0009-2879-5849
https://orcid.org/0009-0006-6994-8600
https://doi.org/XXXXXXX.XXXXXXX

HEAL@CHI’25, April 26, 2025, Yokohama, Japan Qian Yang, J.D. Zamfirescu-Pereira, Jessie Jia, and Asad Nabi

3. The LLMs and multi-agent systems struggled with handling
cross-file dependencies even at similar levels of task complexity.

This paper makes three contributions. First, it presents Tru-
manBench, the first framework for evaluating intelligent systems’
ability to execute non-programmers’ code modification requests.
Second, it offers a profile of three LLM-based systems’ performance
in executing non-programmers’ requests to modify a real-world,
2,000-line codebase. Third, it identifies opportunities for future
work, including near-future opportunities in designing end-user
code modification tools using today’s LLMs, and research opportu-
nities around tailoring future open-source codebases for end-user
inquires via LLMs.

2 RELATEDWORK

2.1 Evaluating LLM on Code Modification

LLMs such as GPT and Claude hold exciting promises for end-user
programming, as they possess an unprecedented ability to generate
code based on natural language instructions—a paradigm some-
times referred to as Malleable Software [8]. Multi-agent systems
built upon these LLMs further add to this promise. For example,
architectures likeMetaGPT [4] and CHATDEV [10] assemble a set
of LLM-based agents, each assigned specific roles such as project
managers, developers, and quality testers, in accordance with Stan-
dardized Operating Procedures (SOPs). These architectures have
demonstrated stronger software engineering abilities than singular
LLMs, as measured by popular benchmarks.

However, no existing benchmarks or evaluative frameworks have
utilized end-user code modification requests to assess LLMs’ code
generation capabilities [11, 12]. Instead, they focused on requests
made by programmers, such as GitHub pull requests [2, 5–7, 11].

One likely reason for this gap is that it is very difficult to as-
sess LLMs’ ability to execute code-modification requests from non-
programmers at scale. Non-programmers’ requests can be ambigu-
ous, hence lack clear criteria for success. In contrast, programmers’
code-modification requests, such as GitHub pull requests, are often
framed to highlight specific bugs or outcomes; Some even provided
their own unit or Oracle tests. As a result, the success of these tasks
can be easily or automatically measured. As prior research prior-
itized evaluating LLMs’ code-modification abilities at scale, they
almost always carefully chose such programmers’ tasks [5, 11].

We wanted to better understand LLMs’ ability in executing non-
programmers’ code-modification requests. To this end, we made
some compromises on scalability and concentrated on a single real-
world codebase and non-programmers’ needs to modify it. We hope
this case study will provide initial insights into LLMs’ capabilities
in end-user code modification, and that future research can build
on this work to make this type of LLM evaluation more scalable.

2.2 The Truman Codebase and

Social Scientists’ Needs to Modify It

In this paper, we focus on Truman, a 20,000-line web app that
is a simulated social media platform created for social media re-
search [3]. It is primarily written in JavaScript and uses frameworks
like Node.js and Pug. Since its launch in 2018, social scientists have

increasingly turned to Truman for hosting human-subject experi-
ments, manipulating the interface, algorithms, and policy designs of
the simulated social media platform in various ways and analyzing
its users’ responses. Truman’s popularity further grew in recent
years, as real-world social media platforms increasingly restricted
access to their data and research APIs.

The social scientists, most of whom lack programming training,
needed to customize Truman to meet their experimental needs.
For instance, they often wanted the platform to exhibit different
behaviors for control and experimental groups. Many hired com-
puter scientists to make these customizations, enabling them to
conduct their experiments and produce many publications (e.g.,
[1, 9]). However, many struggled and were unable to make the
necessary customizations. This paper explores the extent to which
existing LLMs can help.

3 METHOD

We wanted to investigate how effectively state-of-the-art LLMs
and multi-agent systems can assist social scientists in customizing
Truman for their diverse experimental needs. We hope this investi-
gation will serve as a case study for understanding LLMs’ potential
for end-user code-modification more broadly.

We undertook a four-step process to achieve this goal. First, we
collected 23 modification requests for Truman that social scientists
had previously described in their publications. Next, we developed
several single-LLM and multi-agent systems, iteratively evaluating
them on the 23 tasks. This process resulted in over 350 pieces of
LLM-generated code. We then ran all these pieces of code, manually
reviewed results, identified common failure modes, and developed
an evaluation framework for identifying these errors. We named
this evaluative framework TrumanBench. Finally, we formally
evaluated three top-performing systems on all 23 tasks across five
trials using TrumanBench.

3.1 Collecting Codebase Modification Tasks

We started by collecting social scientists’ requests for modifying
Truman; requests that reflect real-world non-programmers’ needs
to modify open-source software. To achieve this, we manually re-
viewed publications that referenced Truman and identified 23 mod-
ifications that social scientists had made to the platform across 11
studies. These tasks fall into five broad categories with respect to
the changes in platform behavior they aim to achieve:
• Adding a feature, such as task 9: If the user is in the experimen-
tal group view: large, view:small, or view:none, then
when they scroll past each post, display an opaque overlay over
the post. This overlay should have the following: a large eye icon,
the text “You’ve read this!”, and a black button "Read Again?" [...];

• Removing a feature, such as task 18: Remove the functionality to
flag (social media) comments;

• Making an requirement optional, such as task 19: Make submitting
an image optional when creating a post;

• Assigning experimental conditions, such as task 2:When a user cre-
ates an account, randomly assign them to one of 4 experimental
conditions: none:view, empathy:view, none:none, em-
pathy:none. This information should remain hidden from the
user;

TrumanBench HEAL@CHI’25, April 26, 2025, Yokohama, Japan

• Reordering social media feed in a certain way, such as task 13:
Show the post that has the comment labeled ambig_flag or
unambig_flag at the top of the timeline each day.
Regarding difficulty levels, we estimated that for a competent

programmer—such as a senior in a computer science undergraduate
program who is already familiar with the codebase—12 of the 23
tasks would take only minutes to complete, 10 tasks would require
hours, and 1 task would take about a day.

3.2 Creating LLM and Multi-Agent Systems

We underwent an iterative process of developing different varia-
tions of a single-LLM system (based on Claude-3-5-Sonnet) and
a multi-agent system (based on GPT-4-Turbo and MetaGPT) and
evaluating them on the 23 tasks.

Let us illustrate this iterative process by showing how we en-
hanced the multi-agent system’s ability to identify the right file to
modify. We initially implemented this system using the SOP frame-
work fromMetaGPT [4]. The system consisted of many LLM agents,
each assigned roles such as project manager, spec writer, tech lead,
developer, quality assurance (QA) agent, and more. However, we
found that the system struggled with most tasks due to difficulties
in identifying the specific lines of code that required modification.
To address this, we experimented with several approaches, listed
below, and ultimately adopted 2, 3, and 4 because their combination
yielded the best performance.
1. Adding a Retrieval-Augmented Generation (RAG) engine, which

dynamically selects the most relevant files based on the em-
bedding similarity between the task instruction and the stored
document embeddings;

2. Adding a “file identifier” LLM agent;
3. Removing non-essential agents, specifically the “project man-

ager”, “spec writer”, and “tech lead”. We found that these agents
often added unnecessary details to codebase-modification re-
quest, making the system more error-prone in identifying rele-
vant files;

4. Adding to the codebase a file directory, which includes two
new manually written files: file_structure.json, which
outlines the locations of each file within the codebase, and
file_description.json, which offers a two-sentence sum-
mary of each file’s function;
In addition to this example, we also improved the multi-agent

system by experimenting with various implementations of the QA
agent for quality control before eventually removing it, by adding a
“file replacer” agent to ensure the system generates descriptions of
changes to existing code (rather than standalone new code), along
with many other improvements. We performed similar experimen-
tation with the single LLM system.

After all this experimentation, we identified three top-performing
systems for final evaluation.
• “The Claude-based system”, which prompts Claude-3-5-Sonnet
using a three-part prompt: the evaluation task described in natu-
ral language, the entire code base serialized into a string, and a
template for the output:
=== /path/to/modified_file1 ===
[Complete content of modified_file1]
===/path/to/modified_file2 ===

[Complete content of modified_file2]
[etc...];

• “Claude with file directory”, which includes the Claude-based
system and the file directory files;

• “MetaGPT with file directory,” which includes a system of three
agents (a file identifier, a developer, and a file replacer) using the
MetaGPT architecture, along with two file directory files1.

3.3 Analyzing System Performance

We evaluated each work-in-progress system by feeding it one task
description at a time2 and manually reviewing the outcomes. We
then made improvements to the system accordingly. This iterative
process produced over 350 different LLM-generated code changes,
the analysis of which revealed common system failure modes. We
synthesized these findings into an evaluative framework, namely
TrumanBench. For the final three systems, we tested each one on
all 23 tasks five times to rigorously evaluate both their performance
and consistency. We manually graded the code modifications gen-
erated by each system during each trial using TrumanBench. The
next chapter first provides an overview of TrumanBench and then
presents the results of this formal evaluation.

4 FINDINGS

4.1 TrumanBench, an Evaluative Framework

We present TrumanBench, an initial framework for evaluating AI
systems’ ability to execute non-programmers’ code modification
requests (Table 1.) It includes three components:
• A set of questions that categorize the request into types, which
helps stratify the request’s difficulty level. These questions as-
sess, for example, whether fulfilling the request requires changes
to multiple files or just one, and whether it involves front-end
changes, back-end changes, or both;

• A set of rubrics for grading the system’s output in response to
the request. These rubrics assess: (1) Does the generated code
modification correctly interpret and follow the request? (2) How
well does it fulfill the request? (3) To what extent did it alter or
break unrelated parts of the codebase? Each criterion is scored
as follows: 8 indicates complete correctness, meaning the system
executed the task fully and accurately without unintentionally
impacting the rest of the codebase; 5 indicates partial correct-
ness; 2 indicates complete incorrectness; and 0 indicates that the
generated code does not run, such as when it includes an emoji.
Additionally, each system can earn 2 bonus points if the generated
code adheres to software engineering best practices. For example,
if a system could complete the task by simply importing another
file from the codebase but instead rewrites that file, it receives
8 points. If it imports the file, it receives 10 points. If it fails to
complete the task, it receives 5 points or lower.

1Note that there is no "metaGPT without file directory" system. Unlike Claude, the
MetaGPT system cannot function without the file directory. The Truman codebase
exceeds MetaGPT’s context window size and cannot fit into its prompt. We address this
issue by relying on the file identifier agent and the file directory files to dynamically
identify relevant files and include only these files in the prompt.
2We created a Python pipeline to do somore efficiently. Taking inspiration from Jimenez
et al. [5], this pipeline feeds one code-modification task into one system at a time,
collects the code change the system proposes, then clones a new copy of the Truman
code base, applying the code changes to this copy.

HEAL@CHI’25, April 26, 2025, Yokohama, Japan Qian Yang, J.D. Zamfirescu-Pereira, Jessie Jia, and Asad Nabi

How difficult is the codebase modification task?

Func Count Does the task require modifications to multiple functions? Yes | No

File Count Does the task require modifications to multiple files? Yes | No

Front/Backend Does the task require modifications to the front end, the backend, or both?
Front end | backend | both

Effort Level How much time would this task take a component programmer who is familiar with this code base to accomplish?
Minutes | hours | a day | days | weeks

How capable is the system in executing this task?

Instruction

Interpretation

& Following

8 pts The code generated indicates that the system interpreted the instruction correctly.

5 pts The code generated is relevant to the instruction, but indicates that the system misinterpreted it partially.

2 pts The code generated is entirely irrelevant to the instruction.

0 pt The code generated doesn’t run.

Task

Completion

10 pts The generated code not only accomplishes the task, but also adheres to software engineering best practices ??.
These best practices include: efficiency (e.g., if a task can be accomplished by modifying a single line of code, it doesn’t
rewrite an entire file), readability, maintainability, etc.

8 pts The generated code accomplishes the task, but does not adhere to software engineering best practices.

5 pts The generated code runs, but only partially accomplishes the task.

2 pts The generated code runs, but does not perform the task at all.

0 pt The code generated doesn’t run.

Impact on the

Rest of the

Codebase

8 pts The code generated does not unintentionally impact the rest of the codebase.

5 pts The code generated creates an unintended impact on the rest of the codebase, but the impact is not severe enough
to jeopardize its user-facing functionalities.

2 pts The code generated unintentionally jeopardizes other user-facing functionalities of the codebase.

0 pt The code generated doesn’t run.

How consistent is the system?

Consistency Standard deviation of the scores above. Provide the same codebase modification task to the same system multiple
times. How consistent is the system’s performance on the rubrics above?

Table 1: TrumanBench, a framework for evaluating AI systems’ ability to execute natural langauge code modification requests.

• Consistency measure. This measures the stability of the grades
across multiple runs.
We developed this evaluative framework based on the errors

we observed while assessing various LLM systems on social scien-
tists’ Truman modification tasks. Thus, the framework can also be
viewed as a taxonomy of errors that LLMs might make in handling
code modification requests.

4.2 Evaluation Result Overview

Our evaluation suggests that state-of-the-art LLM-based systems
are not yet capable of reliably executing non-programmers’ requests
to modify a large, real-world code-base. Three key results led to
this claim.

Firstly, the three best-performing systems generated code modi-
fications that, on average, scored between 6.3 and 7.0 on the three

output quality measures (Figure 1). It means that the modifications
interpreted social scientists’ requests semi-correctly, executed them
partially, while altering unrelated parts of the codebase, though not
enough to break the entire web app.

Secondly, each LLM-based system shows highly inconsistent
performance, as evidence in the high standard deviation of their
output quality scores across all three metrics. For the two criteria
with a maximum score of 8 points—instruction interpretation and
impact on the rest of the codebase—the standard deviation of each
system’s performance ranges from 2.33 to 3.03. For the criterion
with a maximum score of 10 points, the standard deviations range
from 3.64 to 4.13. This indicates significant performance variability,
encompassing nearly half of the full range of possible scores.

The inconsistency of the LLM systems is also evident in the
unpredictability of when and where severe errors occur. 11.7-18.7%

TrumanBench HEAL@CHI’25, April 26, 2025, Yokohama, Japan

Figure 1: The performance of three state-of-the-art LLMs and multi-agent systems in executing social scientists’ various

requests for modifying Truman, a 2000-line web app and research software. These systems are not yet capable of reliably

executing these tasks.

of the time, these systems generated code that doesn’t run, indi-
cating the lowest possible output quality. Importantly, such errors
occurred across all types of tasks, rather than being concentrated in
a few difficult ones. No single task or task type (e.g., adding versus
removing features) consistently caused any of the systems to fail at
this level. This was particularly true for single LLM systems, which
completed more tasks reliably but performed worse on other tasks.

Thirdly, the most common and severe failure mode of these LLM
systems is their tendency to break the rest of the Truman codebase.
Among the three output quality measures, these systems scored
the lowest on the third criterion: their impact on the rest of the
codebase, with an average of 4.6-5.3 points out of eight.

To summarize, the three state-of-the-art LLM systems failed to
execute tasks correctly, did not excel in any specific subset of tasks,
and often broke the codebase when they made errors instead of
merely failing to add new features. As they currently stand, these
systems are not ready for real-world use.

4.3 More LLMs and More Agents Did Not Help

Contrary to popular belief, adding more LLMs or agents did not im-
prove system performance (Figure 1). In this case study, while our
best-performing single LLM successfully and consistently executed
eight out of 23 tasks, the best-performing multi-agent system man-
aged to do so with only two tasks. Furthermore, this top-performing
multi-agent system comprised just three agents (file identifier, de-
veloper, and file replacer), outperforming systems with more agents.

One key reason for this is that adding an additional LLM in-
stance or agent introduces new types of errors, and the errors made
by different agents often compounded. For instance, the original
metaGPT architecture [4] included a project manager agent, which
is designed to coordinate other agents to divide and conquer the
code-modification tasks. However, in this case study, the project
manager agent often added new requirements to the social scien-
tists’ requests, derailing the work of downstream agents. To identify

and address these errors, we included a Quality Assessment (QA)
agent and experimented with various implementations. However,
the QA agent itself also made errors, further complicating the work-
flow without yielding measurable improvements in outcomes.

4.4 Struggles with Cross-File Dependencies

Figure 2: The performance of two top-performing LLM sys-

tems. They both were significantly better at tasks involving

the modification of a single file compared to those involving

multiple files.

HEAL@CHI’25, April 26, 2025, Yokohama, Japan Qian Yang, J.D. Zamfirescu-Pereira, Jessie Jia, and Asad Nabi

A key reason for the LLM systems’ suboptimal performance
of these is their struggle with handling cross-file dependencies.
All three best-performing LLM systems performed significantly
better on tasks involving the modification of a single file than on
those involving multiple files. In executing tasks that involved
modifying a single file, Claude-generated code almost scored 8
points on average, indicating consistent, successful task completion
(Figure 2, top left figure, red bar). However, when faced with multi-
file tasks, these systems struggled. They often failed to identify
the multiple files to modify (Figure 2, figures on the right, blue
bars) and sometimes attempted to create a new file from scratch
to compensate for a file they could not locate in the codebase. At
other times, they had difficulty making the necessary modifications
across these files (Figure 2, figures on the right, red bars) or avoiding
the disruption of unrelated files (green bars).

This limitation of LLM-based systems significantly impacted
overall performance because most code modification tasks involved
multiple files. This issue arises not only from the inherent nature
of the tasks (e.g., modifying both the front end and the back end)
but also from the design of the Truman codebase. On the one hand,
Truman took a PUG-based template approach, which seperates
the presentation layer (HTML) and the underlying logic of the
web app in different files. Many modification requests from social
scientists involved changes to both. On the other hand, Truman
kept the variables that social scientists frequently needed to modify
into a single .ENV file. While this setup makes it easier for social
scientists to make manual edits, it complicates matters for LLMs.
When performing any task involving these variables, LLMs must
understand the cross-file dependencies between the .ENV file and
the other files from which the variables originate—a task that LLMs
often struggled with.

We attempted to improve Claude’s understanding of cross-file de-
pendencies by adding a file directory to its prompt, but this change
led to minimal improvement overall (Figure 1 left and middle sub-
figures). It did enhance Claude’s performance on tasks where it was
already fairly successful. Among the 23 modification tasks across
five trials, Claude with the file directory consistently completed 15
tasks, one more than Claude without the file directory. However,
the file directory also led to an increase in severe errors: Among
the 115 outputs generated (23 tasks x 5 trials), Claude with a file
directory produced code that failed to run 16.5% of the time, worse
than Claude without file directory (11.7%) or MetaGPT (18.7%.)

5 CONCLUSION

This paper aims to profile the capabilities of state-of-the-art LLMs
and multi-agent systems in executing social scientists’ requests
to modify Truman, a 20,000-line web app that is a social science
experimental platform. LLMs have significant potential in end-user
code modification, as they can empower non-programmers and
greatly amplify the impact of open-source software. However, these
capabilities remain under-studied. We hope that this case study can
serve as an initial step toward understanding and improving LLMs’
abilities in end-user code modification more broadly.

Our case study shows that LLMs currently cannot reliably exe-
cute the social scientists’ requests, and contrary to popular belief,
adding more LLM agents did not necessarily help. A key reason

for this is that LLMs struggle with cross-file dependencies, making
them capable of completing the few tasks that involve modifying
only one file, but not yet proficient in handling multi-file tasks.

Nevertheless, our research process yielded several important
insights that can be valuable for future HCI and NLP research. The
first isTrumanBench, a framework for assessing LLM systems’ abil-
ities to execute non-programmers’ code modification instructions.
While this case study shows that current LLMs and multi-agent
architectures may not yet be ready for real-world end-user code-
modification, we hope that this framework can help researchers
benchmark and track the rapidly evolving capabilities of future
LLMs and multi-agent architectures. As such, they can seize op-
portunities and build no-code code modification tools once the
technology is ready.

Second, we see opportunities in designing end-user code modifi-
cation tools for tasks that involve understanding or modifying a sin-
gle file. While simple from a programming perspective, single-file
tasks can be highly valuable for end users. In the case of Truman,
many essential needs of its users—such as randomly assigning
participants to experimental groups and adding LLM agents to
the simulation—can be accomplished by modifying just one CSV
file in the backend. We suspect such needs exist for many other
open-source software and their users. We encourage designers of
end-user programming tools to identify these needs, as they present
immediate opportunities for current LLMs to make an impact.

Lastly, we see exciting new research opportunities in designing
open-source codebases specifically for end-user modifications via
LLMs. In this case study, we observed that LLM systems struggled
with modifying the codebase, because it was designed for easier
human modifications (e.g., aggregating frequently modified vari-
ables into one .env file) rather than LLM interactions. This raises
the question: What might an open-source codebase look like if it
were designed for LLMs? Even more fundamentally, how might
we design open-source software and end-user code-modification
tools in tandem, such that they together can maximally harness
LLMs’ code-generation capabilities while mitigating their limita-
tions? These are important questions to investigate, as we move
toward a future where end users may increasingly modify code
through LLMs instead of manually. This study offers one initial
insight into these questions: Open-source codebases may become
easier for LLMs to modify if they use simpler file structures, such
as REACT instead of PUG, and avoid aggregating commonly modi-
fied variables (a common practice in current open-source software
development). These simple changes can reduce the need for LLMs
to understand and modify multiple files simultaneously, a task they
currently struggle with. We hope future research can build upon
these emergent insights and join us in investigating how to harness
LLMs best for end-user programming.

ACKNOWLEDGMENTS

We thank Beichen Ma and Winice Hui for their contributions to
earlier incarnations of the LLM systems described in this paper. We
thank Professor Natalie Bazarova and Professor Dominic DiFranzo
for offering insights about Truman and its social scientist users.

This work is supported by Google Research gift <Real-Time
AI for Domain Experts>. This material is also based upon work

TrumanBench HEAL@CHI’25, April 26, 2025, Yokohama, Japan

supported by the National Science Foundation under Grant No.
2313078. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Aparajita Bhandari, Marie Ozanne, Natalya N Bazarova, and Dominic DiFranzo.
2021. Do you care who flagged this post? Effects of moderator visibility on
bystander behavior. Journal of Computer-Mediated Communication 26, 5 (2021),
284–300.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/arXiv.2107.03374
arXiv:2107.03374 [cs] version: 2.

[3] Dominic DiFranzo and Natalie Bazarova. 2018. The Truman Platform: Social
Media Simulation for Experimental Research. In ICSWMWorkshop on Bridging
the Lab and the Field. https://socialmedialab.cornell.edu/the-truman-platform

[4] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng,
Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024. MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework.
In ICLR. https://openreview.net/forum?id=VtmBAGCN7o

[5] Carlos E Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, Ofir Press,
and Karthik R Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues?. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=VTF8yNQM66

[6] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengx-
uan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi
Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin
Jia, Mohit Bansal, Christopher Potts, and Adina Williams. 2021. Dynabench:
Rethinking Benchmarking in NLP. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Computational Linguistics, Online,
4110–4124.

[7] Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao,
Chen Qian, Binyuan Hui, Qicheng Zhang, et al. 2024. DevBench: A Compre-
hensive Benchmark for Software Development. arXiv preprint arXiv:2403.08604
(2024).

[8] Geoffrey Litt. 2023. Malleable software in the age of LLMs. https://www.
geoffreylitt.com/2023/03/25/llm-end-user-programming.html

[9] Philipp K Masur, Dominic DiFranzo, and Natalie N Bazarova. 2021. Behavioral
contagion on social media: Effects of social norms, design interventions, and
critical media literacy on self-disclosure. Plos one 16, 7 (2021), e0254670.

[10] Cheng Peng, Kaige Xue, Yunfan Shao, Xiyang Zhang, Yilun Du, Wenchang Ma,
Tong Zhang, Yong Jiang, Chao Yang, Zhouchen Lin, and Yuandong Tian. 2023.
ChatDev: Developing Software via LLM-based Multi-Agent Collaboration. In
Proceedings of the 2023 Conference on Neural Information Processing Systems
(NeurIPS). https://arxiv.org/abs/2307.07924

[11] Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue
Bao, Zora Z. Wang, Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang,
Hao Yang Lu, Amaad Martin, Zhe Su, Leander Maben, Raj Mehta, Wayne Chi,
Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham Neubig. 2024. TheAgent-
Company: Benchmarking LLM Agents on Consequential Real World Tasks.
arXiv:2412.14161 [cs.CL] https://arxiv.org/abs/2412.14161

[12] Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun Zhao, Roy Bar-Haim, Arman
Cohan, and Michal Shmueli-Scheuer. 2025. Survey on Evaluation of LLM-based
Agents. arXiv:2503.16416 [cs.AI] https://arxiv.org/abs/2503.16416

[13] J.D. Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, and Bjoern Hart-
mann. 2025. Beyond Code Generation: LLM-supported Exploration of the Pro-
gram Design Space. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems.

[14] J.D. Zamfirescu-Pereira, HeatherWei, AmyXiao, Kitty Gu, Grace Jung,MatthewG
Lee, Bjoern Hartmann, and Qian Yang. 2023. Herding AI cats: Lessons from de-
signing a chatbot by prompting GPT-3. In Proceedings of the 2023 ACM Designing
Interactive Systems Conference. 2206–2220.

https://doi.org/10.48550/arXiv.2107.03374
https://socialmedialab.cornell.edu/the-truman-platform
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VTF8yNQM66
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming.html
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming.html
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2503.16416
https://arxiv.org/abs/2503.16416

	Abstract
	1 Introduction
	2 Related Work
	2.1 Evaluating LLM on Code Modification
	2.2 The Truman Codebase andSocial Scientists' Needs to Modify It

	3 Method
	3.1 Collecting Codebase Modification Tasks
	3.2 Creating LLM and Multi-Agent Systems
	3.3 Analyzing System Performance

	4 Findings
	4.1 TrumanBench, an Evaluative Framework
	4.2 Evaluation Result Overview
	4.3 More LLMs and More Agents Did Not Help
	4.4 Struggles with Cross-File Dependencies

	5 Conclusion
	Acknowledgments
	References

