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ABSTRACT 
The release of computationally efficient models, like 
DeepSeek’s R1, has renewed interest in developing open models 
that provide flexibility, privacy and address specialized needs 
beyond those addressed by commercial models produced by 
large companies such as OpenAI, Google, Microsoft, etc. As of 
this writing, the open model repository, Huggingface, hosts over 
180,000 text generation models and their variants. Given the 
large number and variants of LLM models, with new ones being 
added daily, it is a daunting task for decision makers to evaluate 
and compare models to identify those that will best suit their 
purposes. Evaluating and comparing models is not new to 
machine learning communities, with many research papers and 
competitions comparing and ranking models via a variety of 
accuracy-based metrics and leaderboards. As is common 
practice in the ML communities, modelers have started 
leaderboards for some of these metrics, comparing models 
against each other on one or more performance 
indicators.  Multiple evaluation criteria have been proposed and 
used for LLM models, such as ELO rankings from human 
rankings, automated rating using more general-purpose models 
such as GPT4, and Bard. This has led to a state where 
comparisons between the models is muddled and any clear 
advancements are unclear as models are tested with varying 
criteria with little theoretical motivation.  
 
We present a solution recently advanced in the field of decision 
modeling [1,2,3] called Multi-Criteria Model Comparison 
(MCMC) whereby competing models are evaluated across 
multiple, sometimes non-comparable criteria in a way that 
provides a holistic comparison of models while retaining 
decomposability to allow more direct insights into model 
performance. There are multiple advantages of this approach 
over current practices. These include the ability to quantify 
theoretically important criteria not typically quantified, precise 
explanation of any model's high or low overall evaluation, and 
emerging insights from being able to compare non-comparable 
attributes across models.  
 
We demonstrate these advantages by applying it to a 
comprehensive leaderboard for LLM evaluation; the Holistic 
Evaluation of Language Models (HELM: 4). This initial 
application of MCMC to the HELM leaderboards illustrates 
some of the advantages of the procedure for holistically 
evaluating LLMs. While a clear holistic metric ranks every 
model in the set, the score can be decomposed directly into its 
constituent components to provide explainability into a model's 
relative ranking. 
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1 Background 

The current work stemmed from critiques of a modeling 
competition in Psychology [1]. The Choice Prediction Competition 
[5] was a prediction competition designed to promote generalizable 
prediction models for human decision making. The problem being 
addressed was that decision making models in Psychology and 
Cognitive Science tend to be built to explain choice anomalies 
(patterns of human choice that violate the rational axioms of 
expected utility). With a growing multitude of these anomalies 
(some of which contradict each other), the number of decision-
making models created to account for them has also grown with 
few models designed to account for decision making across diverse 
contexts.  
 Erev et al., created a unique paradigm that could replicate 
multiple different decision-making paradigms and replicate 14 well 
known choice anomalies which had yet to be accounted for by a 
single model. They then invited research groups to enter models 
that accounted for all known anomalies and predicted new data the 
best. 25 models were able to enter the competition (by passing the 
threshold of accounting for all 14 historic anomalies). Of the 
models entered, 14 were variants of a baseline model the organizers 
provided as an example, 6 were variants of Prospect Theory [6], 4 
were machine learning models, and 1 was a cognitive process 
model based on Instance Based Learning [7]. Of note, the 4 ML 
models fit the calibration data well, but when predicting new data 
were far and away the worst models in the competition. All of the 
leading models were variants of the baseline provided. The PT 
variants along with the process model finished in the middle of the 
pack. 
 Noting that there was limited variety in the types of models 
entered and that only one model hand important theoretical and 
scientific qualities (e.g. identifiable process assumptions, 
parsimony), Harman et al. [1] outlined multiple factors that limited 
the impact such a competition could have and provided a possible 
solution. The main theme of many of the critiques was the reliance 
on a single evaluative criterion; minimized prediction error (MSD 
in this case). Harman et al. outline how using a single evaluative 
criterion limits the type and variety of models entered (and 
subsequent insights from comparing different types of models) by 
incentivizing predictive accuracy only. While predictive accuracy 
is an important aspect of a predictive model, it is not the only 
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important aspect of a model. Generalizability, explainability, 
parsimony, and falsifiability are a few of the other qualities that are 
desirable for a good model. To provide a solution to these 
shortcomings, Harman et al., introduced a method of quantifying 
and combining additional desirable criteria (e.g. generalizability, 
explainability, adverse impact) into a method of evaluating models 
across multiple criteria. The initial work was formalized for 
scientific competitions of decision-making models but can be 
readily applied to any AI/ML or predictive modeling evaluation. 
 
2 Multi-Criteria Model Comparison  

 
Harman et al. outline multiple reasons why evaluating predictive 
decision models on a single evaluative criterion (e.g. predictive 
accuracy) have disadvantages that incentivize problematic 
characteristics of models (e.g. lack of generalizability, overfitting, 
lack of explainability) and disincentivize desirable characteristics 
of models. Their unique solution was to design an evaluation 
system which evaluates models along multiple criteria at once, 
adding unique and emergent insights into model comparisons.  The 
first prerequisite for multi-criteria model comparison (MCMC) is 
establishing a taxonomy of desirable characteristics of a model. 
Following is the taxonomy Harman et al. developed for modeling 
competitions in human decision making;  
 
1. Theoretical criteria 
1.1 Intuitive understanding- A model should be able to guide 
intuitive predictions and interventions/prescriptives in the real 
world. (see [8,9] Katsikopoulos, 2020; 2014) 
1.2 Broad scope- a model should be able to be applied to (or easily 
adapted to) various scenarios / paradigms. (see [10]Busemeyer & 
Wang, 2000) 
 
2. Psychological Criteria 
2.1 Realistic knowledge- Predicted behavior should not be based 
on information participants are not likely to have, or is hard to 
obtain. [11] (Meir, Lev, & Rosenschein, 2014) 
2.2 Realistic capabilities- Predicted behavior should not rely on 
complex computations, non-trivial probabilistic reasoning, etc. [12] 
(Busemeyer & Diederich, 2009) 
2.3 Identifiable process assumptions- A model should rely on 
identifiable and testable psychological processes. [13] (Weber & 
Johnson, 2012) 
 
3. Scientific Criteria 
3.1 Parsimony- a model should have as few parameters as possible, 
and parameters should be meaningful. [14] (Kuhn, 1977) 
3.2 Predictive power / validation - A model should be able to 
predict new behavioral data with accuracy. [10] (Busemeyer & 
Wang, 2000) 
3.3 Reproductive Power - a model should be able to reproduce 
common phenomena. [5] (Erev et al., 2017) 
3.4 Testability / Falsifiability- A model should produce predictions 
that could be falsified, or predict behavior that would not happen. 
[15,16] (Popper, 1934/1959; Roberts & Pashler, 2000) 
 
The taxonomy detailed by Harman, et al. represents the major 
desirable characteristics of a cognitive decision-making model. 
One of the advantages to MCMC is that it can be adapted as needed 

by different fields. Models that are not psychological in nature for 
example may exclude category 2 all together while adding 
additional criteria. Likewise, additional criteria could be added 
specific to different fields and goals. For example, a more specific 
taxonomy for explainable AI (XAI) could include criteria such as: 
 
4. Explainability Criteria 
4.1 Common Explainability - a human user should be able to 
generate an adequate mental model of the AI decision process.  
4.2 Formal Explainability/interpretability - A model’s decision 
should be traceable or reproducible.  
4.3 Trust – A model should produce predictions that are trusted by 
human users and meet their expectations. 
5. Ethical Criteria 
5.1 Adverse Impact – A model should not produce differential error 
rates correlated with race, gender, income, or other population 
characteristics.   
 
These are very general ideas for additional criteria relevant to XAI, 
but they serve to illustrate the flexibility of MCMC. In our example 
in this paper we use well established benchmarks for LLM models 
outlined in the HELM database. 

2.1 Quantifying Criteria 
The key to the multi-criteria evaluation procedure is that all criteria 
be quantified at least ordinally (including dichotomous rankings). 
Harman et al. detail multiple ways that their outlined criteria could 
be quantified. Predictive power is a straightforward quantification 
of minimized prediction error using measures such as MSD. Other 
criteria, such as intuitive understanding, broad scope, or 
falsifiability are more flexible. At the simplest level, quantifying 
some of these criteria could be done in a competition by model 
builders checking a box, the model is/is not falsifiable. 
Alternatively, competition organizers could appoint independent 
judges to provide those ratings. A more in depth measure of 
something like broad scope could provide several 
scenarios/paradigms for a model to predict and produce a count of 
how many paradigms the model can be generalized to.  
 
The key to this step is that each criterion is assigned a rank of some 
sort. Harman et al., discuss in depth how competition organizers 
have flexibility in doing this and how competition goals could be 
reflected in the quantification mechanisms. As will be seen in the 
next section, a continuous measure will have a larger impact on 
models’ final evaluations. As an example, consider a modeling 
competition concerned with selecting employees from a large pool 
with multiple pre-employment measures. So, if an organizer is 
primarily interested in whether a selection algorithm produces 
adverse impact for example – a measure such as, the difference in 
proportion of minority /women candidates of the selection pool and 
the chosen people would be quantified continuously. If the 
organizers were primarily interested in predicting the best 
performers, this measure of adverse impact could be dichotomous 
with a threshold (i.e. if the difference in proportion of minorities is 
less than X, the model scores 1 else 2). A middle ground could also 
be established where multiple bins are created for the adverse 
impact score representing a categorical measure; 1(0-1%), 2(1-
3%), 3(3-5%), etc.  
 



 
 

 

 

What’s important in the examples above is that each criterion is 
quantified. Though organizers may minimize the importance of a 
criteria through its quantification, the fact that it is still measured 
has multiple important consequences. To name a few; models (and 
model builders) are incentivized to consider different criteria, a 
competition is opened to a larger variety of model types, and 
importantly post hoc comparisons of models are enriched by clearly 
showing a models’ standing relative to other models across a 
variety of features. The major quantitative advancement proposed 
by Harman et al., was the adoption of voting rules from the field of 
computational social choice to perform direct model comparisons 
across multiple criteria at once.  

2.2 Evaluating Models 
To evaluate candidate models (and select a winner for modeling 
competitions) Harman et al. proposed a combination of Condorcet 
and Borda rule voting where models are ranked ordinally on each 
criteria. If one model is a Condorcet winner (better than every other 
model on a majority of criteria) the competition is over (see [17] 
Fishburn, & Gehrlein, 1977 for a detailed discussion of Condorcet 
consistency), and if there is no Condorcet winner a Borda voting 
rule is applied, where models are given points based on their rank 
on each criteria, with agreed upon tie breakers in the cases of Borda 
ties.  
 
  
Figure 1 
Hypothetical competition rankings for two modeling 
competitions 
  Competition 1 

 C1 C2 C3 C4 C5 

Model 1 3 1 2 2 1 

Model 2 1 1 1 1 1 

Model 3 2 1 1 1 2 

Model 4 4 2 1 1 2 

Model 5 5 1 3 1 2 

  Competition 2 
 C1 C2 C3 C4 C5 

Model 1 3 1 2 2 1 

Model 2 1 2 1 1 1 

Model 3 2 1 1 1 1 

Model 4 4 2 1 1 2 

Model 5 5 1 3 1 2 

Note. Figure 1 shows hypothetical rankings of 5 models 
across 5 criteria (C1-C5). 
 

As an example consider hypothetical results from two simplified 
competitions (Figure 1). In both competitions, the first criterion is 
an ordinal ranking with no ties such as MSD. The second, fourth, 
and fifth criteria are binary criteria with a model that satisfies the 
criteria ranked 1 and models that fail to satisfy the criteria ranked 
2. Criterion 3 represents an ordinal ranking with ties, such as 
accounting for historical phenomena where a model could account 
for all phenomena, all but one, all but two etc.  
 
To first establish whether a Condorcet winner is present, all 
pairwise comparisons are performed with a model that is ranked 
above another model in a majority of criteria being superior. For 
example, in the first competition Model 3 is superior to Model 1 as 
it ranks higher than Model 1 on three out of five criteria. These 
pairwise comparisons can be illustrated using an edge graph 
(Figure 2) where a model that is superior to another has a line 
pointing away from it to the dominated model. A tie between 
models would be represented with a double headed arrow.  A 
Condorcet winner then would have all possible lines pointing away 
from it. Examining Figure 2 it is clear that Model 2 is a Condorcet 
winner in competition 1 and would be declared the winner with no 
further computation. 
 
 Figure 2 
Edge graphs for competitions 1 and 2 
 
 

 
 
                                        
   
      Competition 1                            Competition 2 
Note. Figure 2 displays an edge graph of the 5 hypothetical 
models from Figure 1. Directional arrows represent a model 
that dominates another model and double headed arrows 
represent a tie. 
 
Competition 2 does not have a Condorcet winner as Models 2 and 
3 are tied (each beats the other on one criterion and they are tied on 
the remaining three criteria). In this case a Borda run-off would be 
performed. In Borda rule voting, models are assigned points to their 
rank on each criterion with more points for higher ranks. Because 
Criteria 1 and 3 have more than two ranks, winners of these criteria 
would receive an advantage. Figure 3 shows the Borda count for 
each model in competition 2. In many cases a Borda run-off would 
determine a winner when no Condorcet winner was present. In this 
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example however, models 2 and 3 remain tied after the Borda run 
off. There are two possibilities in this case; one is that organizers 
could agree that ties are acceptable, and two models would be 
declared winners; the second alternative would be using an ordinal 
criterion that the organizers believe to be the most important to 
declare a final winner. In the case of the CPC and many other 
competitions this would be MSD. 
 
Note that in these two fictitious examples, the model that 
minimized MSD more than all others is still declared the winner. 
The process of getting there though, opens the door for more 
diverse models in the competition and more methods for comparing 
model performance and testing auxiliary hypotheses, multiplying 
the potential insights that could be gained from a single 
competition. Additionally, the relative importance of specific 
criteria (i.e., prediction) could still be determined by competition 
organizers via binary vs. rank ordering. In the CPC for example, all 
of the models that qualified would be ranked 1 on a reproductive 
power criterion, making the strictly ordinal prediction criterion 
more discriminating. Not only would a multi criteria competition 
set up improve the diversity of models entered, this more in depth 
model comparison procedure could clarify the best properties of the 
ultimate winner. In the final results of the CPC, 12 of the top models 
were statistically indistinguishable [5, p. 389] and the winner was 
basically a random draw. With multiple criteria, further 
comparisons have the possibility of distinguishing competing 
models beyond their statistical tie. A more detailed outline of 
setting up and running a multi-criteria competition is provided in 
[1] supplemental online material. 
 
In addition to allowing direct model evaluation across multiple 
differing criteria, this structure also provides more insight into 
relative model performance. For example, in a traditional 
competition a model may win because its error term is slightly 
lower than other models with no other insights gained. In a multi-
criteria competition that model may win because it has a slightly 
lower error term and has more evenly distributed errors between 
gender and race than other models etc. Key for the current topic, 
the multi-criteria method would allow the promotion of 
scientifically inspire qualities in the creation of AI models.  
 
 Figure 3. Hypothetical competition rankings with a Borda 
run off for competition 2. Borda counts are in parentheses 
next to the original ranking. 
 

 C1 C2 C3 C4 C5 Borda 
Total 

Model 1 3 (3) 1 (2) 2 (2) 2 (1) 1 (2) 10 

Model 2 1 (5) 2 (1) 1 (3) 1 (2) 1 (2) 13 

Model 3 2 (4) 1 (2) 1 (3) 1 (2) 1 (2) 13 

Model 4 4 (2) 2 (1) 1 (3) 1 (2) 2 (1) 9 

Model 5 5 (1) 1 (2) 3 (1) 1 (2) 2 (1) 7 

 
 

3 Applying MCMC to HELM Evaluation Data 
 
To illustrate the straightforward and intuitive nature of 
implementing MCMC, we ran a demonstration using data from 
HELM. 

3.1 Holistic Evaluation of Language Models (HELM) 
The most comprehensive leaderboard for LLM evaluation at 
time of initial writing is the Holistic Evaluation of Language 
Models (HELM: 4). In particular, we chose to focus on the 
HELM classic dashboard, which feature collections of 
leaderboards containing 119 models, 116 scenarios, and 110 
metrics at the time of writing. While HELM is comprehensive it 
falls short of the holistic nature of its moniker.  HELM has eight 
different categories of leaderboards; accuracy, calibration, 
robustness, fairness, efficiency, bias, toxicity and 
summarization. For each category, models have scores across 
many different benchmarks. HELM aggregates scores across 
benchmarks into a mean win rate for each of the eight groups of 
scenarios, providing eight different leaderboards. HELM is a 
comprehensive and valuable tool for LLM evaluation, however 
integrating a MCMC procedure with HELMs data is a useful 
advancement and increases both the holistic evaluation of LLMs 
while also enabling the discovery of emerging insights more 
readily. 

3.2 Applying MCMC to HELM Evaluation Data  
For the categories to be evaluated, we choose to use the eight 
categories already summarized on HELM: accuracy, bias, 
calibration, efficiency, fairness, robustness, summarization , and 
toxicity. We used HELMs mean win rate as the metric for each 
category which measures the one on one win rate for a model 
against other models for each benchmark within a category. A 
full implementation of MCMC could also be used to rank models 
on each individual benchmark and perform a Borda count across 
category benchmarks providing a Borda score for each category 
as opposed to a mean win rate. For the current purposes, using 
the mean win rates provides enough evidence to show the 
advantages of the MCMC procedure. Table 1 lists the 67 models 
and their respective data ordered by mean win rate for accuracy. 
For each category we list the mean win rate followed by the 
Borda score for that category in italics. Table 2 shows and ranks 
Models by the Borda total across categories. 
 
This initial application of MCMC to the HELM leaderboards 
illustrates some of the advantages of the procedure for 
holistically evaluating LLMs. While a clear holistic metric ranks 
every model in the set, the score can be decomposed directly into 
its constituent components to provide explainability into a 
model's relative ranking. For example, Llama 2 has the highest 
accuracy relative to other models but ranks 7th in the overall 
evaluation. Examining the other categories, Llama2 also 
outperforms all other models in fairness and robustness and 
performs among the best models in toxicity. Where Llama2 is 
handicapped is that it provides no scores for calibration, 
efficiency, and summarization. An important note is that 



 
 

 

 

although Llama2 doesn’t have a score on these three metrics, 
they are not treated equally. For efficiency, Llama2 accumulates 
42 Borda points while it receives only 19 for calibration. This 
reflects the fact that most models do not have scores for 
efficiency while most models do have scores for calibration. 
Therefore, a model not having a score in a category is weighted 
by how much of a disadvantage that is relative to other models.    
 
 
Table 1. Total Borda scores for each model alon with borda points for: 
accuracy(A), bias(B), calibration(C), efficiency(E), fairness(F), 
robustness(R), summarization(S) and toxicity(T). 

Model Borda Total A B C E F R S T 
Cohere 
Command beta 
(52.4B) 

457 63 56 48 41 64 62 64 59 

Jurassic-2 
Jumbo (178B) 

437 61 62 64 41 61 56 58 34 

J1-Grande v2 
beta (17B) 

403 48 59 58 41 48 51 64 34 

text-davinci-002 401 65 33 40 61 63 66 57 16 
Anthropic-LM 
v4-s3 (52B) 

393 56 60 19 42 57 59 45 55 

Jurassic-2 
Grande (17B) 

387 54 54 57 41 51 55 62 13 

Llama 2 (70B) 385 67 43 19 41 67 67 28 53 
Cohere xlarge 
v20221108 
(52.4B) 

384 45 64 46 41 42 41 65 40 

LLaMA (30B) 377 57 61 19 41 60 57 28 54 
Luminous 
Supreme (70B) 

375 44 55 56 41 35 39 66 39 

TNLG v2 (530B) 370 59 40 53 41 56 46 67 8 
J1-Jumbo v1 
(178B) 

356 33 48 65 45 33 31 53 48 

gpt-3.5-turbo-
0613 

352 58 38 19 41 54 53 28 61 

J1-Grande v1 
(17B) 

352 28 52 55 49 29 27 61 51 

Luminous 
Extended (30B) 

350 31 66 45 41 28 29 48 62 

gpt-3.5-turbo-
0301 

348 55 36 19 41 47 58 28 64 

text-davinci-003 348 62 9 32 41 65 65 44 30 
Cohere xlarge 
v20220609 
(52.4B) 

345 38 63 43 44 37 33 46 41 

Cohere 
Command beta 
(6.1B) 

343 46 15 42 41 47 42 52 58 

Mistral v0.1 (7B) 338 64 39 19 41 62 64 28 21 
LLaMA (65B) 337 66 8 19 41 66 63 28 46 
Palmyra X (43B) 332 53 46 19 41 58 60 28 27 
OPT (175B) 329 42 58 27 46 45 35 54 22 
Vicuna v1.3 
(13B) 

329 48 42 22 41 53 52 28 43 

Vicuna v1.3 (7B) 326 43 34 21 41 45 48 28 66 
J1-Large v1 
(7.5B) 

324 16 48 59 50 16 18 60 57 

LLaMA (13B) 319 40 57 19 41 41 43 28 50 
LLaMA (7B) 314 35 49 19 41 39 40 28 63 
Llama 2 (13B) 312 60 26 19 41 59 61 28 18 

BLOOM (176B) 308 29 46 28 48 38 38 34 47 
Cohere large 
v20220720 
(13.1B) 

308 24 44 63 51 23 24 50 29 

Llama 2 (7B) 303 41 22 19 41 43 44 28 65 
Jurassic-2 Large 
(7.5B) 

301 37 18 61 41 32 37 49 26 

OPT (66B) 298 30 67 24 54 31 30 52 10 
Falcon (40B) 296 52 29 19 41 49 50 28 28 
Cohere medium 
v20221108 
(6.1B) 

291 19 51 49 41 22 14 43 52 

davinci (175B) 287 36 17 44 59 40 34 37 20 
GLM (130B) 287 32 19 63 43 34 45 41 10 
Falcon-Instruct 
(40B) 

283 51 13 19 41 52 54 28 25 

 
The fact that a model is evaluated relative to all models in a set 
is not trivial and can influence a models ranking. For example if 
one is interested in only smaller, more manageable/practical 
models evaluation can change somewhat. To explore this we ran 
the same analysis above with a subset of 25 models with between 
7-13B parameters. In this analysis, Cohere Command beta 
(6.1B) won the competition with a 110 Borda Score while 
Vicuna v1.3 (13B) is second with a 105 Borda Score. 
Interestingly, the order of some models flipped due in part to 
differential weighting of null scores. That is to say, they were 
penalized less for faults they have in common with similarly 
sized models. This is one of the multiple advantages in using 
MCMC that are outlined in more detail by [1,2,3]. Though the 
above example focuses on HELM data, the MCMC approach 
can be applied generally to a wide variety of cases where models 
are being compared across multiple criteria.  

CONCLUSION 

In conclusion, we have introduced a Multi-Criterion Model 
Comparison, which builds upon voting rules, drawn from the 
computational social choice method to aggregate information to 
choose a set of candidates. MCMC provides a systematic method 
to rank models based on their performance across a variety of 
benchmarks, rather than one. Further, the weighting of different 
benchmarks can be tuned to reflect the influence that each metric 
should have on the final ranking. This intuitive approach lends 
itself well to evaluating language models, which are regularly 
benchmarked against different datasets and domains.  
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