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ABSTRACT
Large language models (LLMs) are often marketed as all-purpose
tools, capable of assisting users with a variety of tasks. This has
led to the use of LLMs across domains and tasks, and has exposed
some fundamental limitations of LLMs. For data visualization tasks
(where an LLM is asked to create a visualization or answer a ques-
tion with a visualization), we call out challenges associated with
query specification and the difficulty of verifying results. Differently
phrased queries may have the same analytic goal, while similarly
phased queries may lead to dramatically different results. Add to
this the plethora of visualization guidelines and design choices,
and the complexity of evaluating LLMs on data visualization tasks
grows quickly. While correct and credible answers take time to
sort out, plausible-looking, but limited, hallucinated, or otherwise
incorrect model responses are instant and ubiquitous. We explore
the challenges associated with this space, and call for consideration
of combinations of techniques to spot check model responses and
surface errors.
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1 INTRODUCTION
Large language models (LLMs) have been touted as inherently
context-independent, all purpose tools, trained on a wide swath
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of information from different sources and capable of a multitude
of tasks [32, 36, 40, 42]. The argument goes that the bulk of hu-
man knowledge can lead to models that excel at a range of tasks,
well beyond the purview of previous natural language processing
(NLP) models. Log in to OpenAI to use ChatGPT today and you
may see the following pop-up message: “Meet the o3-mini family.
Introducing o3-mini and o3-mini-high — two new reasoning mod-
els that excel at coding, science, and anything else that takes
a little more thinking.” This issue of fit for purpose, both in
the sense that LLMs are treated as all-purpose models when they
aren’t, and that LLM evaluations can’t be generalized to meet this
broad use, represents a major limitation of LLM evaluation. Many
evaluations and audit processes applied to large language models
(LLMs) assume a specific human-facing task, like data visualization
(e.g. nvBench), or domain, like employment (e.g. NYLL 144). The
result is that model testing, evaluation, validation, and verification
diverge in fit and scope from the general-purpose nature of LLMs.

Here we focus on a specific challenge in the context of LLMs for
visualization: LLMs have a propensity to generate seemingly plausi-
ble answers which sometimes turn out to be wrong [19, 23, 25]. This
represents another dimension of difficulty for evaluation because
LLM errors can sometimes seem subtle and difficult to identify.
This is especially concerning in LLM-enabled data visualization
(LLM4VIS), since people often take data visualizations at face value
[10, 37] and may not have the time, resources, or ability to verify
results.

McNutt et al. [31] discuss how a visualization may look plausible,
but lead to incorrect conclusions. These “visualizationmirages” may
be purposefully or inadvertently developed, and require critical
thinking on behalf of a user to identify. This is true whether or not
an LLM is used to generate a data visualization, but the complex and
often opaque nature of LLMs further complicates surfacing errors.
Next, we look at available evaluation techniques. In balance with
the time and effort required to evaluate LLM4VIS, and considering
that plausible-looking, but incorrect model responses are instant
and ubiquitous, we discuss their applicability and limitations. For
us, this problem, which involves both Fiction (plausible-looking
but incorrect LLM responses) and Friction (the time and effort
required to verify LLM responses), is central to LLM4VIS work, as
the tension between the two may dictate the likelihood of users
bothering to check a provided response. This leads to a balancing act
for LLM4VIS evaluation: surface fiction without causing too much
friction in the process. While these issues are not necessarily unique
to LLM4VIS, this is a space where users have to balance semantic
interpretation and validation with verification of a representation
that inherently abstracts away a certain level of detail.
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2 TRADITIONAL PERFORMANCE
MEASUREMENT TECHNIQUES

Many have studied LLM evaluation and auditing practices through
various lenses. In financial, medical, education, and other field-
specific applications, performance metrics, benchmarks, audits, and
other approaches are used to evaluate LLMs. These help to identify
and quantify LLM strengths and weaknesses, though each come
with their own limitations. These limits may reflect a focus on
a specific task or domain, as well as limitations inherent to the
method applied. Here we review various evaluation approaches
used in LLM4VIS, along with their limitations.

2.1 LLM Metrics
Different metrics have been used to evaluate LLM outputs, includ-
ing measurements of accuracy, measurements of ethical thresholds
including privacy protection, misinformation reduction, fairness,
and transparency, measures of fairness including bias mitigation,
and measures of robustness including resistance to manipulation
and attacks [21]. Hu et al. [21] divide LLM metrics into three cate-
gories: 1) multiple-classification metrics which evaluate an LLM’s
ability to classify text into multiple groups; 2) Token-similarity met-
rics which evaluate how well the LLM-generated text aligns with
reference text; and 3) Question-answering metrics which evaluate
LLMs specifically on question-answering tasks. Multiple classifica-
tion metrics may include accuracy, precision, recall, and F1 score.
Token-similarity metrics may include Perplexity, Bilingual Eval-
uation Understudy (BLEU), Recall-Oriented Understudy for Gist-
ing Evaluation (ROUGE) 1 or 2, ROUGE-L, BertScore, and Metric
for Evaluation of Translation with Explicit Ordering (METEOR).
Question-answering metrics may include Strict Accuracy (SaCC),
Lenient Accuracy (LaCC), and Mean Reciprocal Rank (MRR).

The highly structured and focused nature of these metrics limit
their generalizability, and may also differ from real-world scenarios
and use cases. Many focus solely on the text of a response, which
limits their utility in evaluating LLM4VIS. These metrics also pro-
vide a narrow and potentially misleading picture of performance,
and metrics can be gamed [4, 27, 49]. Applying these metrics to
data visualizations is additionally complicated by the fact that many
paths may lead to the same correct answer and a variety of very
different resulting visualizations may be correct for the same query.

2.2 Benchmarks
Many benchmarks have been developed to evaluate LLM perfor-
mance on specific tasks or sets of tasks, including math [22], reason-
ing [41, 60], multilingual reasoning [45], judgment [63], coding [64],
function-calling [39], and multitask accuracy [18].

Benchmarks which evaluate LLMs on data visualization tasks
often focus on specific visualizations, query types, tasks, and do-
mains, limiting their generalizability [9, 14, 30, 46, 61]. While these
benchmarks enable improved testing of LLMs on various data vi-
sualization tasks, some limit which aspects of an LLM response
is evaluated (e.g. the visualization, the code used to generate the
visualization, the provided explanation) and others limit what types
of charts and queries can be tested (e.g. bar charts, scatterplots,
etc.). Ford et al. show that LLM-generated charts do not match the
accuracy of non-LLM-generated charts based on VQA performance

measures [13]. LLMs have also been tested on visual literacy tasks.
These tests, including variations of the Visualization Literacy As-
sessment Test (VLAT), highlight several model limitations, though
authors note limitations to this testing, including the potential im-
pacts of model prior knowledge, prompt engineering, and the limits
of the test set (8 tasks, 12 data visualizations) [7, 20, 28, 38, 43].

Noted benchmark limitations, beyond those related to narrow ap-
plicability, include issues with reliability [52], consistency [58], and
other complex failure states [34], as well as benchmark exploitation,
dataset contamination, and evaluation bias [5].

2.3 AI Audits
AI audits are meant to be independent evaluations of a model’s
processes and outputs to highlight potential concerns to stakehold-
ers [2, 32]. LLM audits may be specific to an application or may
focus on surfacing specific harms like discrimination, privacy and
security gaps, prevention of misleading or malicious information
generation, and other negative human impacts. Because LLMs may
be used for a variety of tasks, and no audit can comprehensively
evaluate all potential tasks, audits provide a limited window of LLM
capabilities and concerns. Audits may help spot check LLM4VIS
applications for a defined set of query-visualization pairs, but a
limited variety of data visualizations may be tested as part of an
audit.

2.4 Metamorphic Testing
Lastly we explore the adaptation of software testing practices to
both visualizations and LLMs. McNutt et al. suggest looking to
metamorphic testing as a way to surface visualization mirages [31].
Metamorphic testing is a technique often used in software test-
ing that uses properties of a program to generate test cases by
varying an input in ways that should have a known effect on the
output. McNutt et al. consider the “test oracle problem” (distinguish-
ing between correct and incorrect behavior), by iterating through
several input changes and verifying that metamorphic relations
should remain invariant across these changes actually do so. In
adapting metamorphic testing for LLMs, studies often aim to de-
fine metamorphic relations (the input transformations with known
effects on the output), which then serve as modular evaluation met-
rics [16, 24, 29, 54]. While we believe metamorphic testing presents
a viable path to more effective evaluations of LLM4VIS, some testing
may be slower and prone to error, as not all scenarios (e.g. errors,
visualizations mirages) are well-covered.

3 ETHICAL CONSIDERATIONS AND
HUMAN-CENTERED TECHNIQUES FOR
LLM EVALUATIONS

3.1 Trust and Alignment
Ethical risks associated with technologies are often grouped into
two categories: quantifiable“hard impacts” (e.g. biased hiring, pri-
vacy failures, environmental impacts, etc.) and less measurable, but
nonetheless significant, “soft impacts” (e.g. behavior changes, moral
implications, overreliance, etc.) [48, 50, 51]. Tigard et al. [50] note
the difficulty of evaluating soft impacts and advocate for embedding
ethical considerations into the model development process to better
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align within the context of the model and potentially preempt some
concerns, but note the challenges inherent in attempting to identify
a wide array of potential social, moral, and ethical choices and im-
plications. Here we discuss the role of ethics- and human-centered
evaluation techniques and consider their application in evaluating
LLM4VIS.

3.1.1 User Trust Measurement and Manipulation. Guo et al. discuss
the importance of explanations and interactivity in building user
trust, noting specifically that visualizations help with interpreta-
tion and promote trust [17]. While reinforcing the importance of
performance metrics and visualizations, other work also found that
including transparency features increased user trust and their un-
derstanding of an AI model [11]. Zheng et al. develop a framework
to evaluate whether an LLM’s response aligns with its intrinsic
knowledge as a way to gauge trustworthiness [62]. Shang et al.
studied affective and cognitive trust in LLMs and found that GPT
models were able to manipulate trust via cognitive and affective
routes in diverse contexts like emotional support, technical aid,
and social planning [44]. Any evaluation of LLM4VIS should take
this into account and test not just for correctness, since, as we
know from McNutt et al. technically correct charts could still be
misleading [31], but also for trustworthiness.

3.1.2 LLM Alignment and Misalignment. Z. Wang et al. survey
approaches to align LLMs with human expectations and identify
four tracks: 1) Various types of reward models; 2) Feedback systems;
3) Reinforcement learning; and 4) Optimization [55]. Huang et al.
break down hallucinations induced during alignment as resulting
from capability misalignment and belief misalignment [23], and
note a gap in research related to capability misalignment within
LLMs. This is important for LLM4VIS because potential ambiguity
in query language could lead to a response that is not aligned with a
query goal. As noted in our abstract, differently phrased queriesmay
have the same analytic goal, but at the same time, similarly phased
queries may lead to dramatically different results. H.W. Wang et
al. gauged various LLMs’ perceptual awareness by having them
identify takeaways from variously oriented bar charts and found
that even leading LLMs struggle with semantic diversity and factual
accuracy. Using an example chart and human takeaways helped
to induce some alignment, but model were found to be heavily
dependent on context rather than data.

3.2 Explainable AI Techniques and Limitations
Cambria et al. surveyed work at the intersection of explainable AI
(XAI) and LLMs and found limited work dedicated to developing
explanation methods for LLMs [8]. They call on LLM researchers to
proactively incorporate explainability practices in LLM design and
implementation; they also call on XAI researchers to explore more
approachable methodologies. These challenges extend to LLM4VIS.

3.2.1 How Does Traceability Work for LLMs? There has been some
work to develop LLM explanations through attribution, though this
is limited to text responses [15]. Others trace LLM-generated code
back to user requirements [35]. While there were many limitations
to these traceability efforts, the work showed promise in improving
LLM responses. Traceability is especially applicable to LLM4VIS

because of the complex paths LLMs take to generate visualizations
through reasoning and code generation.

3.2.2 How Does Accountability Work for LLMs? Understanding
how accountability is parsed when a consequence stems from the
use of an LLM requires clear institutional boundaries, and may rely
on external evaluations like red-teaming and auditing to act as an
enabling and reinforcing support structure [3, 26, 33]. Anderljung et
al. organmize six requirements for providing this external scrutiny
of fronteir models such as LLMs: Access, Searching attitude, Pro-
portionality to the risks, Independence, Resources, and Expertise,
calling for the application of this ASPIRE framework. We consider
accountability to be important in LLM4VIS because the potential
for negative human impact is high when users depend on LLMs for
unverified analysis in high stakes scenarios in fields like healthcare,
finance, and education.

3.2.3 Presenting LLM Uncertainty and Confidence. Another ap-
proach taken to evaluate LLM responses involves quantifying their
predictive uncertainty [1, 57, 59], by estimating epistemic uncer-
tainty stemming from a lack of knowledge (unknown unknowns)
and/or aleatoric uncertainty stemming from irreducible randomness
(such as when multiple answers or interpretations are possible).

Similarly, various studies have attempted to produce confidence
scores for LLM results [6, 47, 53, 56]. Sun et al. evaluate fourmethods
for estimating confidence scores based on softmax, raw token scores,
verbalized confidences, and a combination of these methods [47].

All of these approaches are couched in the distinction between
open-source and proprietary models, which have different limits on
uncertainty and confidence estimation, and may be further limited
by application in contexts where ground truth may be harder to
quantify. Ehsan et al. also point to unanticipated and unintended
negative downstream effects from adding AI explanations [12].
Still, providing this information is especially important in LLM4VIS
where model uncertainty or confidence in a response could make a
large difference in how users make use of the visualization.

4 DISCUSSION
Having reviewed the wide array of approaches to evaluating LLMs,
and the specific complexities of LLM4VIS, We call for deeper con-
sideration of the issue of plausible but incorrect LLM responses
when developing LLM evaluations. Ideally, evaluations are centered
around specific goals which are grounded in human impact, and
in evaluating a model against these goals, we should consider how
something is optimized as well as what is being optimized. We
believe this to be important because users may be less likely to
apply a burdensome process, especially when a plausible looking
LLM response is so readily and nearly instantly available.

The domain of application also comes with specific constraints
and nuances that affect evaluation. When LLMs are evaluated on
tasks in certain fields like medicine, finance, education, not only
do additional privacy, security, and ethical considerations apply,
human impact becomes more central and potentially harder to fully
quantify. It is even more important in these cases that we go beyond
plausibility and verify responses.

Because no one evaluation approach can cover more than a lim-
ited scope of testing, we consider a combination of traditional and
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ethical, and human-centered techniques in evaluating LLM4VIS ap-
plications. This could include using alignment techniques coupled
with benchmark testing in initial stages of development, presenting
uncertainty metrics to users with each model response, and incorpo-
rating well-defined accountability and remediation procedures once
deployed, along with audits as a way to spot check applications.

We call for testing to evaluate how combinations of techniques
can help mitigate the risks associated with LLM4VIS applications,
while addressing the plausibility problem.

5 CONCLUSION
With the somewhat inherent trust placed on seemingly objective
data visualizations [10, 37], it is increasingly important to develop
effective evaluations of LLM4VIS. We believe that no single evalu-
ation technique can address the most significant risks associated
with LLM4VIS, which could include negative consequences for in-
dividuals and groups when applied in healthcare, financial, and
other high-impact sectors. We call instead for the development of
combinations of the discussed techniques.
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