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Abstract
This short paper investigates the use of psychometric scales to eval-
uate user experience with Large Language Model (LLM) apps. LLM
evaluations have predominantly focused on technical benchmarks
measuring capabilities, leaving out the quality of user experience
with these apps. Using the domain of the digital journaling, this
paper presents a user study (n = 39) with an app powered by two
versions of the LLM. The results show that the psychometric scales
can detect subtle but consistent differences between the two ver-
sions, particularly in interpersonal dimensions like relatedness. This
initial investigation suggests that psychological scalesmay be useful
tools for detecting experiential differences between LLM versions
in domain-specific apps.

CCS Concepts
•Human-centered computing→Human computer interac-
tion (HCI); Empirical studies in HCI ; User studies; • Computing
methodologies→ Natural language processing.
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1 Introduction
Large Language Models (LLMs) are increasingly integrated into app
domains used by the general public, fromwriting assistants and cus-
tomer service platforms to healthcare diagnostics and educational
tools. As these LLM apps mature technically, there is a growing
recognition that their effectiveness also depends on the quality of
user experience they provide [39, 62, 66].

Evaluation plays an important role in the development cycle of
LLMs as the results are frequently used to guide the iterative de-
velopment of how these models should be improved. So far, LLM
evaluations have predominantly focused on technical benchmarks
measuring capabilities such as reasoning, translation, and problem-
solving [7, 32].With few exceptions [e.g., 10, 35], the quality of users’
experience with LLMs have not yet been assessed with the specific
aim to guide future LLMs development, along with technical bench-
marks. As a result, there is an urgent need formethods and empirical
results in human-centered AI research to assess user experience
with LLMs—including not only interaction-level features (e.g., UI
design and usability) but also the emotional, cognitive, and reflective
dimensions of user experience—especially in ways that can be used
to direct the training of LLMs.

In this paper, we investigate the potential of psychometric scales—
validated instruments from psychological research—to evaluate how
users experience interacting with LLMs. While established scales
like the System Usability Scale (SUS) [3], User Experience Question-
naire (UEQ) [33], and NASA Task Load Index (NASA-TLX) [22] are
rigorously validated and measure important aspects of user experi-
ence, recent research suggests they are inadequate for capturing the
complex dynamics of human-LLM interaction [31, 58]. Psychometric
scales offer a way to assess deeper psychological dimensions like
mental states and emotional experiences, and have proven valuable
in Human-Computer Interaction (HCI) and Explainable AI research
for measuring user experience [9, 42]. Recently, they have been
increasingly used to assess howwell LLM apps1 can fulfill certain

1"LLM apps" refers to apps where LLMs serve as the primary technology powering the
core functionality (e.g., ChatGPT, GitHub Copilot, Claude). While our findings may be
relevant for apps that incorporate LLMs as supplementary features (e.g., chat support
onwebsites), this paper focuses on evaluating user experiences with primary LLM apps.
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purposes [e.g., 19, 20, 29, 38, 43, 48, 55, 59, 65]. These “fit forpurpose”2
evaluations are important to establish baseline effectiveness of LLM
apps. However, to meaningfully compare and improve LLM apps,
we need psychometric scales sensitive enough to detect experiential
differences between versions. Currently, there is a lack of empirical
evidence on the feasibility of using such scales to differentiate user
experiences, which is essential for advancing our understanding of
evaluating and iteratively improving LLMapps in human-facing app
domains [13].

Specifically, this paper presents our initial results in the domain of
LLM apps for journaling. Our research question is: If, and to what
extent can the selected psychometric scales differentiate the
user experiences of a journaling app run on the two versions
of LLM?We conducted a user study (n = 39) using a custom-made
journaling app (called Journal Kernel) powered by two versions of
the LLM, Claude.3 Four existing validated scales measured core user
experience dimensions (reflection, emotional awareness, motiva-
tion, and basic psychological needs). Our findings show that these
scales detect subtle but consistent differences between the two LLM
versions. This provides preliminary evidence that psychometricmea-
sures may effectively capture incremental changes in an LLM app
for journaling. Building on these results, we highlight the potential
of such instruments to guide the iterative development of LLM apps
and outline several directions for future work, including exploring
generalizability acrossdomains, improving scale sensitivity, and inte-
grating psychometric evaluation into real-world development cycles.

2 RelatedWork
LLMsare frequently evaluatedusing technicalmetrics like fluencyor
factual correctness [7, 32], yet recentdeployments increativewriting,
healthcare, andeducationhaveexposed the limitationsof suchbench-
marks for understanding real-world user experiences [18, 42]. Re-
searchers have thus begun integrating human-centered frameworks
focused on satisfaction, usability, and trust [10, 15, 30, 35, 47, 60],
but largely overlook deeper psychological outcomes like reflec-
tion, emotional awareness, or user motivation. Psychometric scales,
which have been used primarily to study LLMs’ traits (e.g., person-
ality) [12, 41, 49], may fill this gap by assessing how people actually
feelwhen interactingwith evolving LLMs [17, 26, 40]. If they reliably
capture incremental shifts in user experience introduced by new ver-
sions or prompts, product teams gain a practical tool for identifying
unanticipated harms and refining human–LLM interactions [13].

One domain where such in-depth psychometric evaluation is es-
pecially pertinent is journaling, an introspective practice closely tied
to personal wellbeing [25, 36, 67]. As LLM-powered tools provide
reflective scaffolding and dynamic prompts, past work (e.g., Mindful-
Diary [28] andMindScape [46]) has shown that clinical and standard-
ized surveys can confirmwhether these systems “work” for mental
health or reflection. Yet they have not examined subtle experiential
changes that arise when newer LLMs replace older ones. Overlook-
ing such nuances may risk deploying systems that inadvertently
harmusers [1, 2, 53, 54, 64]. By contrast, our focus is onwhether stan-
dard psychometric instruments—validated for reflection,motivation,
2The term fit-for-purpose was first used in biomedical research, where it denotes
context-specific evaluations of tools or methods [34] and has since been adapted to
other fields such as technology design [23], and educational sciences [27].
3Available at https://claude.ai

and psychological needs—can differentiate user experiences across
LLM versions. This lens positions journaling as an useful testbed for
refining evaluation techniques in a truly human-centered manner.

3 Method
We conducted a controlled experimental comparison of two LLM
journaling app versions to investigate whether standard psychome-
tric scales can detect meaningful differences in user experience.

3.1 Participants
We recruited 39 participants (19 female, 20 male; age range 20–67,
𝑀 =34.23, 𝑆𝐷 =12.80) via Prolific. Most (87%) reported prior AI chat-
bot experience (e.g., ChatGPT). Participantswere randomly assigned
to Claude 2.0 (𝑛=17) or Claude 3.5 Sonnet (𝑛=22).

3.2 Journaling App
We developed Journal Kernel, a web-based platform that uses a chat-
style interface to guide reflective writing (see Figure 1). Both LLM
versions had identical Positive Affect Journaling (PAJ) prompts [56],
and only anonymized survey data was collected. A pilot study (12
participants) helped refine the interface and prompts.

3.3 Procedure
After providing informed consent, participants chose one of the PAJ
prompts (e.g., “Reflect on ameaningfulmoment that brought you joy
recently”) and engaged in an open-ended journaling conversation
with the assigned LLM. The system responded autonomously based
on user input, encouraging deeper reflection. Each participant then
summarized their thoughts and completed an online survey. Ses-
sions averaged 9.3 minutes, consistent with other LLM journaling
studies [28].

3.4 Measures
We used 24 items from established scales commonly applied in HCI
journaling research [e.g., 25, 28, 36, 46, 67]. Each itemwas ratedona5-
point Likert scale, with higher scores indicating stronger agreement:

• Reflection quality (5 items): Depth of reflection (e.g., “I
reconsidered my previous beliefs”) [57].

• Emotional awareness (4 items): Ability to identify/process
emotions (e.g., “I recognized my feelings”) [50, 51].

• Motivation (4 items): Enjoyment and effort (e.g., “I enjoyed
this writing session”) [44, 52].

• Basic psychological needs (12 items): Autonomy, compe-
tence, and relatedness [4].

These short-form scales minimized participant burden while main-
taining validity. Data collection conformed to national ethics guide-
lines and was conducted anonymously.

4 Results
Our analysis revealed consistent differences between the twoClaude
versions,withClaude 3.5 Sonnet scoring 0.1–0.3 points higher across
all measured dimensions (see Figure 2). All scales demonstrated ac-
ceptable internal consistency (Cronbach’s 𝛼 = 0.78–0.87). Using
independent two-sample t-tests and Cohen’s 𝑑 effect-size measures,

https://claude.ai


Psychometric LLM Interaction Comparison CHI’25, April 26–May 1, 2025, Yokohama, Japan

(a) (b)

Figure 1: Screenshots of the Journal Kernel interface: (a) prompt selection; (b) interactive journaling session.

we found that while differences did not reach conventional signif-
icance thresholds (𝑝 < 0.05), they consistently favored Claude 3.5
Sonnet. The most pronounced gains appeared in interpersonal as-
pects, particularly relatedness (+0.15) and autonomy (+0.27), while
task-focusedmeasures showed smaller but consistent improvements.
Notably, examination of response distributions revealed fewer very
low ratings (1 or 2) for Claude 3.5 Sonnet compared to Claude 2.0,
suggesting it may reduce the likelihood of negative user experiences.
Next, we detail the specific findings for each psychometric scale.

Figure 2: Mean user experience scores (±SE) for Claude 3.5
Sonnet and Claude 2.0 across six psychometric scales. The
y-axis begins at 2.5 to emphasize differences in scores and
avoid excessive white space, as the average scores across
scales for bothmodels are above 3.0—a baseline expected of
advanced languagemodels.

Basic Psychological Needs. Participants using Claude 3.5 Son-
net consistently reported higher satisfaction of basic psychological
needs compared to those using Claude 2.0. The largest difference
was observed in the relatedness subscale, with Claude 3.5 Sonnet
scoring an average of 4.05 (±0.08 SE) compared to 3.90 (±0.10 SE)
for Claude 2.0 (𝑡 (37) = 1.68,𝑝 = 0.09,𝑑 = 0.34). Similar trends were
observed for autonomy (𝑡 (37)=1.77,𝑝 =0.08,𝑑 =0.35) and competence
(𝑡 (37) = 1.69,𝑝 = 0.09,𝑑 = 0.33). These results suggest that Claude
3.5 Sonnet provides small but potentially meaningful experiential
benefits in interpersonal dimensions.

Reflection Quality. Reflection quality scores showed moderate
differences between versions, with Claude 3.5 Sonnet scoring an
average of 3.46 (±0.10 SE) compared to 3.28 (±0.12 SE) for Claude 2.0
(𝑡 (37)=0.59,𝑝 =0.55,𝑑 =0.12). Notably, both versions received lower
absolute ratings on this scale compared to others, indicating room
for improvement in supporting deep reflection across both models.

EmotionalAwareness.Participants’ scores forEmotionalAware-
ness averaged 4.05 (±0.08 SE) for Claude 3.5 Sonnet and 3.90 (±0.10
SE) for Claude 2.0 (𝑡 (37) = 0.64,𝑝 = 0.52,𝑑 = 0.13). While the differ-
ences are modest, they suggest that Claude 3.5 Sonnet may offer
slightly better support for recognizing and processing emotions dur-
ing journaling. Further research is needed to explore how LLMs can
more effectively facilitate deeper emotional engagement.

Motivation.Motivation scores were 4.13 (±0.08 SE) for Claude
3.5 Sonnet and 4.00 (±0.11 SE) for Claude 2.0 (𝑡 (37)=0.53,𝑝 =0.59,𝑑 =
0.11). These results indicate small but consistent improvements in
participants’ enjoyment and willingness to engage with the jour-
naling task when using Claude 3.5 Sonnet. While encouraging, this
effect was less pronounced than for other measures, suggesting
opportunities for further optimization of user engagement.

5 Discussion
Through a controlled experiment comparing two versions of an
LLM journaling app, we observed initial evidence suggesting that
standard psychological scales might detect subtle differences in how
users experience an LLM-supported journaling conversation. This
preliminary investigation explored the sensitivity of psychometric
instruments inhuman-LLMevaluation contexts, examiningdifferent
dimensions of user experience.

The results indicate consistent but modest differences across all
measureddimensions,withClaude3.5 Sonnet scoring slightlyhigher
thanClaude 2.0. The largest differences appeared in interpersonal as-
pects, such as relatedness (+0.15), and basic psychological needs like
autonomy (+0.27) and competence (+0.21). Task-focused measures,
including reflection quality andmotivation, showed smaller changes,
suggesting potential variation in how different scales capture expe-
riential shifts. While the limited sample size and statistical power
prevent us from drawing definitive conclusions, the overall pattern
of higher scores for Claude 3.5 Sonnet suggests that psychometric
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scales hold promise as tools for detecting nuanced differences in user
experiences between LLM versions.

5.1 Implications
Our study offers several preliminary insights into the use of psycho-
metric scales for evaluating human-LLM interaction. Below are the
key implications for LLM evaluation, product development, andHCI
research.

For LLMEvaluation. The consistent pattern of differences be-
tween versions, while modest, suggests that psychological scales
commonly used in HCI journaling studies can likely detect expe-
riential changes in LLM-supported journaling conversations. This
finding extends current approaches to LLM evaluation, which face
ongoing challenges in transparency, reproducibility, and domain-
specificity [5, 32, 37, 45]. Addressing these challenges is particularly
important as existing frameworks often rely on simplified satis-
faction metrics or unreliable self-assessments [7, 68]. In contrast,
psychometric scales offer potential advantages through their stan-
dardized measurement protocols, established construct validity, and
transparent interpretive criteria. While existing frameworks often
relyon simplifiedmetrics orunreliable self-assessments [16], psycho-
metric scales offer potential advantages through their standardized
measurement protocols and established construct validity. Consider-
ing that LLMs may require entirely new evaluation approaches [63],
we start with existing psychological scales, and depending on future
research results, there may be a need for new scales that are more
sensitive to human-LLM interaction.

For Product Development. Our findings suggest that estab-
lished HCI measurement scales can potentially be adopted ‘off-the-
shelf’ for evaluating LLMapps—that is, using existing scaleswithout
modifying them for LLM-specific interactions. While our results are
specific to journaling with Claudemodels and cannot be generalized
across domains or other LLMs, the fact that these unmodified scales
detected differences suggests that this might be worth exploring
further. The ability to use existing scales provides a practical solu-
tion for practitioners who need accessible tools for developing and
evaluating domain-specific LLM apps [10]. In other words, while
standardized frameworks for human-LLM interaction are still in
development [e.g., 10, 24, 35], practitioners can draw upon existing
HCI research in similar app domains to inform their evaluations.
These establishedmeasures can complement emerging LLM-specific
evaluation approaches. Most psychological scales assess multiple
dimensions of a phenomenon to achieve construct validity [6, 8].
This multidimensional approach enables developers to more pre-
cisely attribute user experience changes to specific aspects of their
system, offering more granular insights than general satisfaction
metrics [14, 61]. For instance, while a prompt engineering change
might improve overall satisfaction, these scales could reveal which
specific experiential dimensions were affected.

For HCI Research. Our study extends prior work suggesting
HCImeasures could inform LLM evaluation [42] by providing initial
empirical evidence for theirutility. Just asHCIevolved fromtechnical
evaluation to studying situated experiences [21], LLM evaluation
needs a similar transformation. The CHI community’s expertise
in empirical studies of technology use and impact is particularly
valuable here. Rather than focusing solely on technical capabilities,

weneedmore research examininghowspecificLLMapps affect users
in real-worldcontexts.This studydemonstratesoneapproach tosuch
empirical work, but many opportunities remain for HCI researchers
to shape howwe evaluate and understand human-LLM interaction.

5.2 Limitations
This study used a simple between-subjects design, which limited our
control over individual differences and exposure to only one model
version per participant. In futurework, we plan to implement amore
robust mixed methods approach combining between and within-
subjects comparisons using a Latin square design with appropriate
control groups to better isolate effects. Our randomization procedure
resulted in uneven group sizes (n=17 and n=22), partly due to partici-
pant attrition and reintroduction,which represents amethodological
limitation. We tested only two specific versions of Claude, which
constrains generalizability to other LLM architectures or release
cycles. Additionally, our experimental design contained too many
degrees of freedom, potentially diluting our ability to detect signif-
icant effects. In future studies, we will exercise tighter experimental
control and compare models with proven experiential differences,
such as those identified through community-driven leaderboards.
Each participant only completed a single journaling session, so we
could not assess how user perceptions evolve with prolonged usage.
Lastly, our findings reflect the timeframe and recruitment choices
(e.g., using Prolific), meaning we could not conduct planned follow-
up interviews due to anonymity requirements. As a result, we cannot
definitively attribute observed differences to any one factor, such as
model improvements versus interface updates.

6 Conclusion & FutureWork
This short paper discussed a pilot study examining whether stan-
dard psychometric scales, commonly used in HCI research, could
detect experiential differences between LLM versions. While our
results show modest effects as expected in an initial exploration,
they suggest potential value in using these scales not just for base-
line effectiveness evaluation, but for comparative assessment that
could guide iterative development. This preliminary work provides
a foundation for refining our approach in future studies with larger
samples and more controlled designs.

Our future work focuses on three key directions: (1) investigating
generalizability across different LLMarchitectures (e.g., variations in
model scale, such as parameter size differences between LLaMA 3.1
8B and 405B [11]), prompting strategies (e.g., task-specific prompts
designed to achieve concrete objectives versus vibe-specific prompts
aimed at setting a particular tone, style, or emotional resonance),
domains (e.g., critical thinking, educational tutoring), and user popu-
lations (e.g., across diverse cultural backgrounds and demographics),
(2) integrating thesemeasurement approaches into actual LLMdevel-
opment cycles to understand their practical impact using a local case
study, and (3) examininghow this psychometric evaluation approach
relates to broader LLM evaluation challenges, particularly its limita-
tions and complementarity with issues like scalability. Through this
work, we aim to support more effective evaluation of LLM-human
interaction as these systems become increasingly integrated into
daily life, affecting real user experiences and wellbeing.
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