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Abstract
Language models (LMs) are increasingly being integrated into a
wide range of applications, yet the modern evaluation paradigm
does not sufficiently reflect how they are actually being used. Cur-
rent evaluations rely on benchmarks that often lack direct applica-
bility to the real-world contexts in which LMs are being deployed.
To address this gap, we propose Dimensional and Contextual
Evaluation (DICE), an approach that evaluates LMs on granular,
context-dependent dimensions. In this position paper, we begin
by examining the insufficiency of existing LM benchmarks, high-
lighting their limited applicability to real-world use cases. Next, we
propose a set of granular evaluation parameters that capture di-
mensions of LM behavior that are more meaningful to stakeholders
across a variety of application domains. Specifically, we introduce
the concept of context-agnostic parameters—such as robustness,
coherence, and epistemic honesty—and context-specific parame-
ters that must be tailored to the specific contextual constraints and
demands of stakeholders choosing to deploy LMs into a particular
setting. We then discuss potential approaches to operationalize this
evaluation framework, finishing with the opportunities and chal-
lenges DICE presents to the LM evaluation landscape. Ultimately,
this work serves as a practical and approachable starting point for
context-specific and stakeholder-relevant evaluation of LMs.
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1 Introduction
Language models (LMs) have significantly evolved from the early
n-gram models first proposed in 1948 [74] to powerful neural mod-
els that are highly capable and general. Furthermore, new train-
ing paradigms have enabled models to follow user instructions
[13, 59], making them more approachable to broader society. This
has led to the widespread adoption of LMs across a range of real-
world domains. For example, LMs are now applied in healthcare
[e.g., 53, 70, 76, 82, 89], education [e.g., 15, 20, 32, 85], law [e.g.,
3, 23, 35, 39], finance [e.g., 43, 49, 55, 79], and human resources
[e.g., 48, 60, 86, 87]. The proliferation of LMs into diverse domains
emphasizes the need for effective, meaningful, and relevant evalu-
ation methods to highlight their context-specific capabilities and
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limitations. Particularly, stakeholders, including those that are non-
technical, rely on LM evaluations to determine, whether, how, and
which models to deploy into their specific context.

The standard approach to evaluating modern LMs is via bench-
marks. They serve as a standardized set of tasks that assess key
capabilities and limitations of LMs, facilitating consistent evalua-
tion which ultimately enables comparisons between models under
various settings [52]. As such, benchmark results are often the
primary factor stakeholders consider when deciding whether to
deploy an LM in a specific context and, if so, which model best
meets their needs. However, many works have noted the limita-
tions of the benchmarking paradigm in LM evaluation. For one,
benchmarks suffer from construct invalidity, meaning they often
do not sufficiently measure what they are intended to measure [66].
This issue is exacerbated largely due to overgeneralized claims of
LM performance made bymodel developers [67]. Additionally, most
benchmarks measure performance on tasks that are not relevant to
how LMs are being used in the real-world [52]. This highlights the
insufficiency of relying solely on benchmarks to guide deployment
decisions across contexts.

Thus, in this position paper, we propose DICE (Dimensional &
Contextual Evaluation), a framework that granularizes and contex-
tualizes LM evaluation to better support domain-specific stakehold-
ers. We begin by reviewing the current landscape of LM evaluation,
considering both the utility and limitations of benchmarks (§2).
Next, we outline DICE (§3). As a part of this framework, we intro-
duce the concept of context-agnostic dimensions, which are relevant
across all domains, and context-specific dimensions, which must be
designed to the particular needs and constraints of a given domain.
We also discuss how DICE can be operationalized. Finally, we ex-
plore the opportunities this framework presents for improving LM
evaluation alongside the challenges that may arise with regards to
its adoption (§5). Ultimately, we contribute a novel perspective to
LM evaluation with the aim to make LM evaluation more contex-
tual and stakeholder-relevant. This work serves as a precursor to
a larger, empirical study and we hope to foster further discussion
on the development of more adaptive, context-aware evaluation
methodologies that better reflect real-world requirements.

2 Current Evaluations of Language Models
2.1 The Modern Benchmarking Paradigm
Currently, LMs are typically evaluated via benchmarks: “a dataset
. . . and a metric, conceptualized as representing one or more spe-
cific tasks or sets of abilities, picked up by a community of re-
searchers as a shared framework for the comparison of methods”
[66]. It has become standard practice to use these benchmarks to
track progress, identify weaknesses, and facilitate comparative anal-
ysis of LMs [67]. For example, model developers use benchmarks
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to 1) guide the development of models by identifying areas for im-
provement and validating progress and 2) encourage the adoption
of their models by reporting state-of-the-art results. Furthermore,
model users often rely on benchmark performance to determine
which LM best suits their specific use case—or whether to use one
at all. Overall, benchmarking offers a standardized approach to
evaluating LMs, serving the needs of developers and users alike.

Over time, numerous benchmarks have emerged, evaluating
different aspects of LM performance. While there are many valid
categorizations, we broadly categorize benchmarks into those of:

General-Purpose Factual Knowledge. These benchmarks con-
sist of question datasets with verifiable factual answers, typically
formatted as multiple-choice or short-answer tasks. These encom-
pass some of the most widely reported benchmarks in LM evalu-
ation. Prominent examples include GLUE [84], MMLU [29], BIG-
bench [80], and Humanity’s Last Exam [63].

ReasoningAbility. These benchmarks assess an LM’s ability for
logical deduction and problem-solving. Mathematical reasoning is
a commonly tested area, as shown by MATH [30] and GSM8K [14].
Additionally, DROP [18] measures discrete reasoning over multiple
paragraphs, while ARC-AGI [12] measures abstract-reasoning and
pattern-recognition. The recent emergence of “reasoning” mod-
els such as OpenAI’s o-series [56] and the DeepSeek models [16]
underscores the importance of evaluating reasoning ability.

Human-Preference Alignment. These benchmarks assess how
well an LM’s outputs align with human preferences, extending
beyond evaluations of objective correctness. Typically performance
is measured via human assessment or by leveraging LLMs-as-a-
judge. Chatbot Arena [11], MT-bench [97], and AlpacaEval [42] are
prominent benchmarks in this category.

Task-Specific Performance. While the previous types of bench-
marks often seek the measure broad and general capabilities of LMs,
task-specific benchmarks constrain evaluation into a specified do-
main. Coding benchmarks such as HumanEval [10] and SWE-bench
[33] are a key focus of the community. But there still exist bench-
marks spanning a diverse array of domains including healthcare
[e.g., 34, 61] and law [e.g., 21, 27, 40].

2.2 Limitations of the Benchmarking Paradigm
While benchmarking has become the dominant framework for eval-
uating LMs, in its current form, it comes with several limitations
that hinder its ability to fully capture model capabilities as they
pertain to real-world environments. Here, we identify and exam-
ine four core limitations while focusing our discussion on their
implications for stakeholders seeking to deploy LMs effectively.

Diminishing Reliability. Benchmarks often suffer from satu-
ration, when most models reach close-to-perfect levels of perfor-
mance, rendering them ineffective for comparison [50]. Further-
more, benchmarks often leak into LMs’ training sets, inflating their
reported performance [17]. Thus, benchmark results become less
reliable for stakeholders seeking to accurately assess LMs.

Limited and Overgeneralized Reporting. Model developers
typically report on a narrow set of benchmarks, often emphasizing

those measuring general-purpose factual knowledge or reasoning
[e.g., 2, 4, 19, 47, 57, 83]. This limited scope constrains model evalua-
tion, which may not accurately reflect how an LMwould perform in
diverse real-world contexts. Furthermore, prioritizing evaluations
on a model’s general capabilities fails to provide stakeholders with
meaningful insights into how a model will behave in specialized
environments that require contextual knowledge.

Construct Invalidity. Benchmarks, especially those that aim
to measure general-purpose capabilities, suffer from construct inva-
lidity [66]. That is, benchmarks often heralded as those of “general”
performance often inappropriately measure the capabilities they are
evaluating for. This results in misleading assessments of a model’s
overall ability, obfuscating how a model would actually behave in
specified real-world scenarios.

Misalignment with Real-World Use-Cases. The way in which
LMs are being used by individuals “in the wild” often concerns
topics that do not align with how LMs are evaluated [94, 96]. Fur-
thermore, even benchmarks that seek to measure task-specific capa-
bilities do not accurately reflect similar tasks faced in the real world.
For example, many medical benchmarks rely on board-style exams
that fail to capture the ambiguities, complexities, and subjectivity
of real medical scenarios [37].

2.3 Positive Steps in LM Evaluation
Despite the limitations of the benchmarking paradigm, recent ef-
forts in LM evaluation have introduced new approaches that aim
to provide more robust, comprehensive, interpretable, and context-
aware assessments of model performance. HELM aims to improve
the transparency of language models through a multi-metric eval-
uation approach that goes beyond evaluating simple accuracy on
benchmarks [44]. CheckEval also takes a multi-metric approach by
decomposing tasks into human-defined dimensions, demonstrating
that this methodology has a strong correlation with human judg-
ments [38]. Other studies have evaluated LMs on human-centric
tasks, such as Chatbot Arena, which collects tasks through crowd-
sourcing [11], and WildBench, which leverages real-world user
queries [46]. Lastly, there has been a rise in context-specific bench-
marks designed with the input of domain experts. For example,
LegalBench, a legal reasoning benchmark, was collaboratively con-
structed through an interdisciplinary process involving subject
matter experts to capture practically useful and interesting capa-
bilities [27]. And MENTAT, a mental healthcare decision-making
benchmark, was created by psychiatrists to capture the ambiguities
faced by mental healthcare practitioners [37]. We use many ideas
put forth by these positive examples of LM benchmarking to inform
our evaluation framework DICE, which we will outline in §3.

3 Dimensional and Contextual Evaluation
Motivated by the positive strides in LM evaluation that aim to ad-
dress the limitations of traditional benchmarking, DICE is a multi-
metric evaluation framework that aims to assess context-aware
granular dimensions of LM behavior. We argue that by dicing up
LM evaluations into such dimensions, we make them more inter-
pretable, and thus more actionable, to stakeholders. Decomposing
evaluation criteria into smaller, well-defined units can enable a
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more focused evaluation methodology, improving construct va-
lidity and providing stakeholders with clear, explicit assessment
criteria that facilitate more straightforward interpretations of model
performance [38]. In contrast to traditional benchmarks that often
measure performance on broadly defined tasks using a single metric
(typically accuracy) [44], evaluating models along granular dimen-
sions allows for a more precise characterization of LM capabilities.
Even when multiple benchmarks are considered, they largely mea-
sure coarsely defined abilities, making it difficult to disentangle
specific factors contributing to model performance [66]. By consid-
ering a structured decomposition of model behavior, we can more
effectively identify specific LM strengths and weaknesses, reducing
ambiguity in evaluation. This enhances the diagnostic power of LM
assessments, providing stakeholders with a clearer understanding
of where models excel and where they fall short, revealing explicit
trade-offs between models [44]. Ultimately this enables clearer and
better-informed decision-making regarding model selection and
deployment as it pertains to specific use-cases.

We classify our proposed dimensions into: context-agnostic
(§3.1) and context-specific (§3.2) dimensions. Context-agnostic
dimensions apply broadly across application domains and serve as
a tractable starting point. Context-specific dimensions incorporate
stakeholders in the evaluation process, ensuring that assessments
align with the contextual requirements of the stakeholder-defined
deployment environment. DICE represents a call to shift towards a
more contextualized approach to LM evaluation while maintaining
some of the tractability and systematic benefits of benchmarking.

We note that we will not make any claims about how to evaluate
all of these dimensions, as doing so would be infeasibly complex.
For instance, entire studies are dedicated to evaluating individual
dimensions such as consistency in various contexts [e.g., 71, 75, 92].
Instead, DICE focuses on addressing key limitations of the current
benchmarking paradigm, providing a structured approach that can
be unified and operationalized (§4) to better support stakeholders
in making informed decisions about LM use in specific contexts.

3.1 Context-Agnostic Dimensions
Context-agnostic dimensions refer to granular dimensions of LM
behavior that are relevant across diverse use cases. By introducing
context-agnostic dimensions, we maintain a sense of standardiza-
tion within DICE by establishing a shared foundation for evaluation
that is applicable across diverse contexts. We note that although
these dimensions are phrased as context-agnostic, the required be-
havior along these dimensions certainly still vary depending on
stakeholder needs and specific deployment contexts. We discuss
how context-agnostic dimensions can be operationalized in §4.

Faithfulness: Are LMs faithful to user instructions? Despite mod-
ern LMs being tuned to follow user instructions [59], they may not
perfectly do so [65, 88, 98]. A model is faithful if it accurately fol-
lows user instructions without distorting information. Failures in
faithfulness can manifest in different ways, such as responding in
the wrong format or generating outputs that include irrelevant
details. Evaluating faithfulness provides stakeholders with how
reliably a model can follow user instructions, a critical requirement
of LM ability across all contexts.

Coherence: Do LM outputs make sense? For a model to be useful
in a particular context, it should speak about relevant topics in
a manner that makes sense. Coherence is not just limited to the
grammatical soundness of text - it should also ensure that LM out-
puts are logically consistent and relevant to the context. Assessing
coherence allows stakeholders to determine whether a model can
articulate ideas in a structured and comprehensible manner that
aligns with the needs of the given use case. Since clear and logi-
cally sound communication is essential across diverse applications,
coherence serves as a foundational dimension for evaluating LM
performance in any context.

Robustness: Are LM outputs invariant to prompt perturbations?
In real-world contexts, LMs are frequently asked to complete similar
tasks despite being faced with variations in prompting [44]. Previ-
ous work has shown that outputs tend to vary greatly under these
circumstances, despite prompts calling for the same behavior from
the LM [72, 75, 92, 95]. This is particularly important in domains
that require reliability and reproducibility, such as legal analysis or
scientific research. Conversely, in more creative contexts such as
writing, some degree of variability may be desirable. Nonetheless,
analyzing robustness provides valuable insights into a model’s suit-
ability for specific use cases. We note that this definition does not
refer to other forms of robustness such as adversarial robustness
[91] that may not be fundamental concerns to many contexts.

Epistemic Honesty: Are LMs honest about their knowledge limi-
tations? Models across contexts are certainly going to face knowl-
edge gaps. Epistemic honesty concerns whether a model reliably
acknowledges these gaps - reliably stating “I don’t know” rather
than generating misleading responses [90]. Evaluating epistemic
honesty is crucial to understanding a model’s trustworthiness and
usability - one that fails to acknowledge its limitations is misleading
while one that is overly hesitant is impractical to use. Evaluating
this dimension enables stakeholders to define and find the cor-
rect balance of model transparency specific to the demands of the
application domain.

Efficiency:What will it cost to deploy a model? Deploying LMs
into any context always comes with associated costs. For one, it
costs money to deploy and use an LM. Furthermore, if an LM
needs to be fine-tuned, one will likely need to pay for API calls,
compute, and/or data. In addition to monetary costs, efficiency also
encompasses time-related factors, such as inference speed and
latency. Recent advancements scale test-time compute, which uses
more computational resources during model inference for better
results. For example, OpenAI’s deep research model may take tens
of minutes to run [58], but provide much more comprehensive
results than other models that respond almost instantly. While
different contexts certainly have different requirements and desires
for LM efficiency, all contexts have certain constraints regarding
how much it should cost to deploy and use a model.

For full transparency, we also acknowledge other dimen-
sions that could have been included in this set but were deliberately
excluded for various reasons. We chose to exclude accuracy as
a context-agnostic dimension as there are many contexts where
there is no well-defined notion of ground-truth. For example,
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there is no notion of correctness when LMs are tasked with
subjective decision-making, which is a common real-world
application [94]. Furthermore, domains such as creative writing or
open-ended brainstorming often do not have well-defined notions
of correctness. Thus, accuracy is not a universally applicable
measure of LM behavior and so we do not consider it a core
context-agnostic dimension. In the LM alignment literature, the
Helpful, Honest, and Harmless (HHH) principle is a framework for
aligning AI systems with human values [31]. However, we choose
to exclude these from the context-agnostic set. While these broad
categories are useful for other purposes, we believe they lack
the granularity necessary for the precise behavioral evaluation
DICE proposes. For a similar reason, we choose to exclude bias
and fairness. While these are undeniably important to measure
the adverse effects that LMs can have on society [1, 8, 44], their
definitions lack granularity across different contexts. Instead, we
encourage stakeholders to define more specific aspects of bias and
fairness such as demographic performance gaps or anti-stereotype
reinforcement as context-specific dimensions. Lastly, uncertainty
calibration, which refers to the fact that if LMs are x% confident in
their answer, they should be correct x% of the time. However, this
again ties back into notions of correctness, which many contexts
do not carry a well-defined notion of. By excluding these, we
ensure that context-agnostic dimensions remain granular and truly
relevant across all contexts.

While these dimensions provide an in-depth starting point, we
do not claim that this list is exhaustive. There are likely many
additional relevant context-agnostic dimensions, and we encourage
future work to address this.

3.2 Context-Specific Dimensions
Context-specific dimensions refer to aspects of LM behavior that
are relevant to the particular environment in which an LM is
deployed. Because these dimensions are necessarily stakeholder-
defined, it is neither possible nor practical to provide an exhaustive
list. Instead, we explore how different stakeholders may define di-
mensions through case studies that illustrate how they can vary
across diverse contexts.

Specifically, we consider deployment environments of mental
healthcare and education. We choose to study these two contexts
because they encompass distinct requirements illustrating the ne-
cessity of context-specific evaluation. It is important to emphasize
that the dimensions we define are not intended to be a definitive or
exhaustive standard but rather as illustrative examples. Our goal is
to encourage stakeholders, both within these domains and beyond,
to critically evaluate and refine dimensions that align with their
specific needs and constraints rather than establish exhaustive lists.

3.2.1 Case Study I: Mental Healthcare.

Trigger Warning: This section contains and discusses men-
tions of sensitive mental health topics.
Many countries, including the United States, face national-level
mental health crises [9, 69], while access to mental healthcare re-
mains limited and insufficient [68, 81]. In an effort to make mental
healthcare more accessible to those that would otherwise go un-
treated, many mental health practitioners are turning to AI-enabled

digital mental health tools, with a particular focus on LMs, to enable
personalized, real-time support for patients [28, 64].

Consider a psychiatrist who seeks to reduce wait times at their
clinic by introducing LMs to assist in preliminary psychiatric evalua-
tions. Following the requirements of task-autonomous AI in mental
healthcare proposed by [26], we discuss dimensions of LM behavior
the psychiatrist may evaluate in addition to the above-mentioned
context-agnostic dimensions in order to make a well-informed de-
cision regarding whether, or which, models to deploy.

For one, an LM should prioritize the prevention of harm to the
user (e.g., in cases of suicide or self-harm) or others. For exam-
ple, a patient with schizophrenia (a chronic brain disorder with
symptoms that include delusions and hallucinations) may ask an
LM to advise them on how to remove a chip from their brain [26].
Thus, the psychiatrist may define the dimension of harm preven-
tion, which asks whether the LM actively discourages and prevents
harm through their responses. To complement this dimension of
evaluation, the psychiatrist may additionally be concerned with
sycophancy, where an LM tends to affirm a user’s thoughts, even if
harmful. Sycophancy can lead to exacerbating distress, reinforcing
negative self-affirmations, and validating delusions [26]. By evalu-
ating these dimensions, the psychiatrist can gain information about
whether LMs are sufficiently safe to deploy.

Furthermore, a psychiatrist may be concerned with an LM’s di-
agnostic accuracy, corrigibility, and interruptability. An LM
should be able to assess individuals accurately without misleading
human psychiatrists or users with incorrect diagnoses. Corrigibility
ensures that if an LM provides incorrect information, it can recog-
nize corrections and adjust its responses accordingly to maintain
accuracy and reliability. Additionally, the psychiatrist may want to
ensure that a human practitioner can intervene when necessary or
that a user can halt the interaction at any time. Evaluating these
three dimensions helps determine whether LMs are sufficiently
knowledgeable, adaptable, and responsive for integration into men-
tal healthcare applications.

Of course, it is up to the psychiatrist to determine how to opera-
tionalize the evaluations along these dimensions. Especially in the
context of mental healthcare, there is a lack of pragmatic datasets
that represent real-world tasks where most benchmarks simply
take the form of standardized, multiple-choice tests. One potential
choice could be MENTAT, a dataset designed by psychiatrists that
captures the real-world ambiguities of mental healthcare [37].

3.2.2 Case Study II: Education. Since the introduction of tools such
as ChatGPT, LMs have increasingly been integrated into educational
contexts. Not only are they used by students to solve homework,
but they can also be used as study assistants, teaching assistants
and adaptive learning tools [85]. In this case study, we consider a
high school looking to adopt an LM to serve as a teaching assistant
tasked with duties such as question generation, curriculum design,
and automatic grading across all subjects.

Because the school is seeking to use one LM across all subjects,
here is a case where it would be beneficial to deploy a more gen-
erally capable LM. Thus, the school can evaluate the dimension
of accuracy on general high school knowledge. To operationalize
this dimension, the school can evaluate on a subset of MMLU [29],
restricting their analysis to only the tasks labeled at high school
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level difficulty, such as high school math, history, or psychology.
Performing this analysis enables a school to determine whether
an LM meets the necessary knowledge requirements to function
effectively as a general teaching assistant. For example, it provides
information regarding whether an LM will be able to generate
factually correct statements or grade students accurately. Further-
more, a school may be concerned with pedagogical alignment
[77]. An LM should be able to generate questions, design curricula,
and provide feedback that aligns with the school’s learning objec-
tives for students and teaching values. For example, if the school’s
pedagogy emphasizes constructive learning, when evaluating a
student’s short-answer response, an LM should not merely point
out the flaws in the student’s reasoning but also provide alternative
reasoning that builds from what the student already wrote.

Furthermore, the school may desire LM behaviors such as ad-
herence, and explainability. The first can be exemplified in adher-
ence to teacher-provided rubrics or documents to grade students
or design curricula rather than use its own preconceptions. For
example, the rubric may specify ignoring grammatical errors in a
student’s short answer to place stronger emphasis on the student’s
conceptual understanding of the content. Additionally, a teacher
may want an exam that assesses content only within the scope
of a textbook. Evaluating adherence allows a school to deploy an
LM that is flexible to the requirements of the school rather than
rely on the model’s preconceptions that may lead to misaligned
grading practices or curriculum design. Regarding explainability,
the teacher may want to be able to understand why an LM graded
the way it did or decided to include certain topics in a lesson plan
while omitting others. An explainable LM ensures that grading or
curriculum design remains transparent, allowing teachers to verify
its reasoning, identify potential biases, and make well-informed
adjustments when required.

Again, our goal with these case studies is not to provide exhaus-
tive lists of dimensions. Rather, we illustrate the types of consid-
erations stakeholders may make in different contexts in order to
define relevant context-specific dimensions. We show that distinct
behaviors are desired out of LMs just within the contexts of mental
healthcare and education. This points to the insufficiency of using
broad-scoped evaluation methodologies and the necessity to con-
textualize evaluations to make them more relevant to stakeholders.

4 Operationalizing Evaluation
As discussed, DICE assesses LMs on context-aware dimensions,
making evaluations more interpretable by reducing ambiguity and
highlighting explicit trade-offs based on stakeholder-defined pref-
erences. However, for DICE to be actionable to stakeholders, it
must be operationalized. Here, we outline key considerations and
approaches for implementing DICE in a systematic manner.

While the above discussion primarily concerned the identifi-
cation of dimensions on which to evaluate LMs on, we did not
discuss how to actually measure them. Each dimension, whether
context-agnostic or context-specific, needs to have clearly defined
evaluation protocols and metrics. The construction of such evalu-
ation protocols should involve stakeholders to ensure the chosen
metric accurately reflects the requirements of the context [67]. This
applies to both context-agnostic and context-specific dimensions.

For example, when measuring robustness, a stakeholder in cre-
ative writing may use n-gram metrics such as BLEU [62], valuing
fine-grained variations in diction and syntax and preferring lower
levels of consistency for more diverse and creative outputs. On the
other hand, a stakeholder in healthcare may use metrics such as
BERTScore [93] to de-prioritize structural differences in texts by
focusing on semantic similarity and desire higher levels of con-
sistency, ensuring straightforward, predictable outputs. For many
dimensions, human evaluation is likely the most suitable method.
For example, the dimension of pedagogical alignment explained in
the Education case study likely requires teacher input to ensure that
LM outputs correspond with relevant teaching styles and promote
instructor-specified learning objectives for students.

Once stakeholders determine how to measure individual dimen-
sions of interest, the natural next step is to determine how one
can aggregate measurements to ensure that results meaningfully
inform decisions. Not all dimensions are of equal importance, and
not every dimension is equally important across contexts. As an
example, consider the dimension of epistemic honesty, again in the
domains of healthcare and creative writing. A medical practitioner
may value a model aware of its knowledge limitations much more
than a novelist. Thus, it is not sufficiently meaningful to take a
simple average of performance along the dimensions — a common
approach in existing LM evaluations [e.g., 29, 38]. Rather, stake-
holders should define a context-specific weighting system in order
to ensure that the most critical dimensions are prioritized while
those that are less relevant do not dominate the decision-making
process. One approach that stakeholders can take is to implement
a priority order to help balance trade-offs among dimensions [31].
The flexibility to weight different dimensions of LM behavior is a
key advantage of DICE. By considering granular dimensions, stake-
holders can more clearly identify the types of behavior they seek in
a model specific to their use case and explicitly examine trade-offs
to ensure their final decision aligns with their contextual needs.

While defining dimensions of LM behavior and determining
meaningful measurements are crucial steps for stakeholder-relevant
evaluations, these alone are not enough. For LM evaluations to be
truly context-aware, we must also ensure that they are evaluated
on datasets that accurately reflect their intended deployment con-
texts. Evaluating on general-purpose benchmarks or benchmarks
misaligned with the intended deployment context does not provide
sufficiently representative information, thus misguiding decision-
making regardless of how well-defined the dimensions or mea-
surements are. This underscores the urgent need for evaluating on
context-specific datasets that capture the complexities of a diverse
array of real-world use cases of LMs. As we move towards a more
context-aware paradigm of LM evaluation, it is crucial to address
both the opportunities that arise from DICE and the challenges that
must be addressed to ensure its successful adoption.

5 Opportunities and Challenges
5.1 Opportunities
This section presents further opportunities for DICE in LM evalua-
tion.While most benchmarks assume the existence of an objectively
correct answer, many decisions in human-AI collaboration are in-
herently context-dependent and open to interpretation. Thus, a
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more pluralistic approach [78] is required. For instance, in bias de-
tection for content moderation, there is often disagreement about
what is and what is not considered offensive material [25] and mul-
tiple assessments might be possible depending on cultural context
due to the need for subjective interpretation [5, 22]. In such cases,
DICE’s context-dependent dimensions for LM evaluation could
include well-known metrics such as toxicity level, but also less ex-
plored ones, such as cultural alignment [51] or perspective-taking to
better evaluate if an individual or population are being harmed [6].
Other open-to-interpretation scenarios include HR decisions for
hiring [24], conflict resolution [73] and group decision-making [11]
where it becomes important to assess which perspectives the LM is
emphasizing or suppressing to mitigate biases to ensure fairness.

DICE also facilitates stakeholders to take a more active role in
LM evaluation, aligning with the emphasis on carefully consider-
ing stakeholder needs within their specific domains to inform the
design of evaluation criteria [45]. Stakeholder knowledge provides
valuable contextual insights into the real-world settings where the
models will be deployed, including domain-specific expertise and
more detailed business requirements and constraints. Therefore, un-
derstanding and catering to stakeholder needs will improve DICE’s
relevance and applicability. The target audience of stakeholders
for our framework includes business decision-makers who do not
possess technical knowledge in machine learning but are imbued
with recommending or selecting an LM for an application. This au-
dience requires clear performance metrics suitable to their business
needs that allow for cross-comparison of models, which we aim to
enable with DICE. Another potential application would be to sup-
port stakeholders in choosing between existing benchmarks. Since
DICE’s dimensions define the desired LM behavior parameters, it
would be possible to align dimensions against existing benchmark
metrics and map out the most suitable option. For example, Legal-
Bench identifies six categories of legal reasoning [27]. If a legal
stakeholder’s dimensions correspond with any of these dimensions,
this benchmark becomes a good candidate for evaluation. Thus, our
framework does not aim to replace benchmarks, but rather, extract
the most meaningful interpretations of benchmarks to stakeholders.

5.2 Challenges
To ensure the longevity of our proposed evaluation framework,
DICE, we anticipate challenges related to scalability, flexibility and
trade-offs. The first challenge, scalability, relates to the demands
for datasets to power the framework, with special concerns for the
scarcity of domain-specific datasets. The second challenge, flexibil-
ity, includes similar issues, also inherent to a data-hungry system,
as adaptability to new use cases and domains will require more
data to prevent the framework from becoming static, outdated and
irrelevant to stakeholders. The last challenge is about negotiating
trade-offs between dimensions, as it is known there are tensions
between certain criteria, for example balancing robustness, fairness
and accuracy in deep neural networks [41]. While DICE’s construc-
tion enables this type of analysis that would otherwise be diffcult
to do, this presents a multi-objective optimization problem that
may be difficult to resolve [7]. Furthermore, multiple stakeholders
having competing needs and goals presents another challenge to
the implementation of DICE.

While many of these challenges remain open problems in LM
evaluation, we explore potential approaches for addressing them
within the research community. Pertaining to the need for domain-
specific datasets, we acknowledge that while there are good exam-
ples, they are often still misaligned with the context or scarce. Thus,
we encourage the broader Human-Computer Interaction and Com-
puter Science community to collaborate with domain experts in
order to create appropriate, well-aligned datasets. This will enable
contextually relevant evaluation across contexts, which DICE relies
on for maximum utility. Pertaining to the need for an adaptable
framework, future work may explore strategies to ensure DICE
remains responsive to evolving use cases and stakeholder require-
ments. By design, DICE allows stakeholders to add, remove, or
reweight evaluation dimensions, enabling a flexible assessment
process. However, maintaining adaptability also requires access to
dynamic, context-specific datasets, which remains an open chal-
lenge. Addressing this issue will be critical to ensuring that DICE
continues to provide relevant and meaningful evaluations across
diverse applications. Pertaining to negotiating trade-offs between
dimensions, there exist many approaches to resolving difficulties
in aligning and resolving multi-objective optimization [e.g., 36, 54].
We encourage future work to assess how these approaches align
with human preferences, thus guiding the choice of optimization
frameworks that best capture stakeholder preferences, which can
then be integrated into DICE.

As stated, this work serves as a precursor to a larger empirical
study in which we will aim to address these challenges as well.
Specifically, we will conduct a series of case studies each focus-
ing on a particular domain. For each, we aim to determine both
context-specific dimensions and how to evaluate context-specific
dimensions through a literature search (e.g., to identify applica-
ble benchmarks) and domain expert guidance. After obtaining LM
performance across all dimensions, we will examine various ag-
gregation methods (e.g., weighted average or lexicographic pareto
dominance) and compare the resulting rankings with the rankings
of human experts to validate the utility and reliability of DICE.

6 Conclusion
As LMs become integrated into diverse facets of society, evalua-
tions must evolve beyond the current benchmarking paradigm to
better serve real-world applications. Thus, we introduced DICE as a
framework to enable a more granular, context-aware evaluation of
LM behavior. We argued that DICE makes evaluations more mean-
ingful, interpretable, and actionable to stakeholders. Furthermore,
by specifying context-agnostic and context-specific dimensions, we
provided a structured approach for context-aware evaluation that
remains tractable across diverse domains. We then explored how
DICE could be operationalized by discussing how to evaluate and
aggregate dimensions.

While DICE faces challenges pertaining to the need for context-
specific datasets, evolving use cases, and resolving trade-offs in
multi-objective optimization, it ultimately presents many oppor-
tunities for contextualizing the current LM evaluation landscape,
fostering more adaptive, transparent, and stakeholder-driven as-
sessments.
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