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Abstract
Large Language Models (LLMs) have demonstrated exceptional
capabilities in understanding and generating human-like text, lead-
ing to their integration into various sectors, including agriculture
and healthcare. There is growing interest in leveraging LLMs in
Retrieval Augmented Generation (RAG) systems for medical chat-
bots to assist frontline healthcare workers, especially in resource-
constrained settings like Indian primary healthcare. Building such
systems hold great potential however, deploying LLM based so-
lutions in such critical contexts demands rigorous evaluation of
their robustness to noisy and diverse inputs inherent to real-world
scenarios. This paper presents a way to stress-test and evaluate
the robustness of LLMs in RAG-based medical chatbots for Indian
primary healthcare. We assess their ability to handle noisy inputs
in a question-answering task by introducing character-, word-, and
sentence-level perturbations. Additionally, we evaluate the RAG
system’s ability to abstain from answering out-of-domain queries
and analyze the impact of Automatic Speech Recognition (ASR)-
generated transcriptions—commonly used to enhance accessibility
for digitally low-skilled users—on chatbot performance.
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1 Introduction
Large Language Models (LLMs) [12, 23] have demonstrated remark-
able capabilities in understanding and generating human-like text,
including sophisticated question-answering (QA) abilities [21, 25].
These strengths make them highly suitable for conversational appli-
cations like chatbots, leading to increasing interest in their potential
to assist frontline workers in healthcare. However, deploying stan-
dard LLMs directly in such critical domains presents significant
challenges. These models can be prone to hallucinations (generat-
ing plausible but factually incorrect outputs) [28], their knowledge
is inherently limited by static training datasets with fixed cut-off
dates [22, 30], they lack access to real-time or local contextual
knowledge, and their grasp of specialized domains like healthcare
may be incomplete due to the composition of their vast but general
pre-training data [41]. Overcoming these limitations is crucial for
building reliable and trustworthy healthcare applications.

Retrieval Augmented Generation (RAG) [26] is a technique used
to address these limitations by augmenting an LLM with external
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knowledge retrieved from a dedicated knowledge database. By inte-
grating real-time, domain-specific information into the generation
process, RAG can significantly reduce hallucinations and enhance
the LLM’s expertise in specialized areas, such as healthcare. This
approach has gained widespread adoption and is now powering
several production-level LLM applications, including Perplexity
[1] and ChatGPT Search [2], which leverage RAG to deliver more
accurate, context-aware, and up-to-date responses.

Accredited Social Health Activists (ASHAs) and Anganwadi
workers are frontline healthcare workers in India who play a crucial
role in community health, especially for women and children. RAG-
based chatbots can significantly support these workers [20, 36]
by providing reliable, context-aware answers to queries related to
maternal and child health, among other tasks. However, given the
critical nature of healthcare, it is essential to rigorously test these
chatbots for robustness before deployment. Real-world use presents
challenges such as user typos in text inputs and errors from Auto-
matic Speech Recognition (ASR) models in voice interactions, as
voice technologies remain limited to a few resource-rich languages
[18].

To evaluate the impact of real-world challenges on RAG-based
chatbots in Indian primary healthcare settings, we designed experi-
ments to simulate various input issues like typos, asking queries
in different ways, etc. We also assessed the chatbot’s robustness
in abstaining from answering out-of-domain queries. Additionally,
we incorporated Automatic Speech Recognition (ASR) transcrip-
tions to analyze how imperfect voice-to-text conversions affect the
accuracy and reliability of responses.

2 Related Work
Healthcare chatbots powered by Large Language Models (LLMs)
have gained widespread adoption, particularly in India, where they
assist patients and frontline health workers, such as Accredited So-
cial Health Activists (ASHAs) and Anganwadi workers, in address-
ing diverse medical queries [34]. These chatbots leverage Retrieval-
Augmented Generation (RAG) techniques [16, 26] to improve re-
sponse accuracy by relying on trusted medical sources, mitigating
the limitations of static training data. Despite evaluations of LLM-
based medical chatbots in Indian contexts [16], there has been little
research on their robustness to user input errors and Automatic
Speech Recognition (ASR) inaccuracies in primary healthcare set-
tings.

Robustness evaluations of LLMs have become a critical area of
research, especially in high-stakes domains like healthcare [32].
Prior studies have explored various error types, including adversar-
ial inputs, out-of-distribution data, and noisy environments [11].
However, for LLMs to be effective in healthcare, they must not only
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process general language but also handle complex medical termi-
nology [17] and domain-specific nuances [31]. Research has shown
that LLMs struggle with medical jargon [32], text perturbations
[14, 15], and context-specific retrieval challenges [39, 43, 44], rais-
ing concerns about their reliability. The integration of ASR further
complicates this issue, as misrecognized medical terms can degrade
chatbot performance and potentially lead to incorrect results[24].
Despite the growing adoption of LLM-based chatbots in health-
care, no prior work has examined the impact of ASR integration on
RAG-based chatbots in the context of Indian primary healthcare
settings.

Given the challenges of evaluating healthcare chatbots, expert
human assessments remain the gold standard, ensuring accuracy,
relevance, and safety. However, this process is resource-intensive.
Recent studies have explored LLM-based evaluators as a comple-
mentary approach [13]. Li et al. [27] found that pairwise evalua-
tions align closely with human judgment when assessing chatbot
responses across different categories. While LLM-based evalua-
tions offer scalability, they should complement rather than replace
human assessments to ensure reliability [40, 42]. To leverage the
strengths of both approaches, our evaluation pipeline integrates
LLM-based assessments for rapid, large-scale testing while relying
on human evaluation for deeper, high-quality validation.

3 Dataset Preparation Methodology
We created an evaluation dataset to assess our RAG-based chatbot,
leveraging the expertise of our in-house public health specialists.
The dataset is based on English-language training modules [5] de-
veloped by government authorities in India for training Accredited
Social Health Activists (ASHAs). Our experts curated a Question-
Answer dataset using these training materials, ensuring that the
questions reflect real-world scenarios and challenges faced by front-
line healthcare workers.

The dataset comprises 509 questions covering key topics such
as pregnancy, maternal health, and child health. The Themes of
these questions are shown in Figure 3. Each entry includes a ques-
tion, its corresponding ground truth answer, and metadata such
as the document name and page number from which the question
was derived. This allows us to evaluate retrieval recall alongside
comparing the chatbot’s response with the ground truth answer.

For example:
• Question:When should a pregnant woman visit the clinic
for the fourth time?

• Ground Truth Answer: The fourth visit should be after 36
weeks.

• Document Name: Induction Training Module for ASHAs
in Urban Areas (English)

• Page Number: 78
To simulate real-world conditions, taking inspiration fromWang

et al. [39], we introduced errors using various transformation func-
tions at both the word and character levels to the medical questions
alongwith creating paraphrased versions of the questions. Eachmis-
take level represents a specified percentage of words transformed
within the original query, categorized as follows: 1-10%, 11-20%,
21-30%, 31-40%, and so on till 91-100%. For example, a mistake level
of 1-10% indicates that between 1 and 10 percentage of the words

in a query are modified. We removed duplicate queries from the
dataset. Our final dataset size is 48,828. Data distribution across
each mistake level is presented in Figure 2.

The Transformation functions are described further in the fol-
lowing sub-sections.

3.1 Character-Level Transformations
Typos and other character-level errors are common in real-world
text inputs and have been known to degrade the performance of
NLP systems [10]. Research has shown that evaluating these per-
turbations is crucial for assessing model robustness and ensuring
real-world preparedness [35]. To test our chatbot’s resilience against
such errors, we implemented the following transformations:

Add: Insert a random lowercase letter [𝑎−𝑧] at a randomposition
in the word.

Remove: Delete a character from a random position in the word.
Substitute: Replace a character with its adjacent counterpart

on a QWERTY keyboard to simulate human typing errors.
Swap: Swap the positions of two adjacent characters in the word.

3.2 Word-Level Transformations
Word-level perturbations introduce variations that test a chatbot’s
ability to handle real-world language inconsistencies. Users whose
native language is not English may use a phonetically similar word,
or mistakenly insert a space while typing. We implemented the
following transformations:

Split Word: Randomly split a word into two separate words at
a random index.

Phonetic Similarity: Generate a phonetically similar word to
the original. We used GPT-4o [7] to create these examples. This
type of transformation helps evaluate the chatbot’s ability to handle
words that sound alike but may have different spellings

Medical Terms: Here we only create mistakes in medical terms.
First, we identify medical terms in a given query using GPT-4o [7].
Then, we introduce spelling errors in one medical term at a time,
generating multiple variations while keeping the rest of the query
unchanged.

3.3 Sentence-Level Transformations
Paraphrased queries are essential to evaluate the robustness of the
RAG chatbot in handling variations in user input. In real-world
scenarios, users may phrase the same query differently, and the
chatbot should still retrieve relevant and accurate responses. To
simulate this, we generated paraphrased queries using an LLM (GPT-
4o) [7]. For example, the original query "What are the symptoms of
anemia during pregnancy?" was paraphrased as "How can I identify
if a pregnant woman has anemia?" This ensures that the chatbot
is tested on semantically similar yet syntactically different inputs.
Prompts used for various transformation functions to introduce
noise in the input queries can be found in Appendix 8.1.

Examples of transformed queries for each transformation func-
tion are presented in Table 9.

3.4 Out of Domain queries
To evaluate the performance of the RAG chatbot in abstaining from
answering out-of-domain queries, we generate a total of 533 queries
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unrelated to healthcare across various domains, including Sports,
Finance, Agriculture, Banking, Politics, and Education, using GPT-
4o[7].

3.5 Audio Dataset
To evaluate our ASR system on local Indian dialects and medical
vocabulary, we collected an audio dataset from two districts in Uttar
Pradesh, India: Bahraich and Barabanki. With the assistance of our
medical experts, we curated a list of medical queries and provided
them to ASHA workers in these districts. The ASHA workers were
then asked to speak these queries in Hindi to curate this dataset.
Our dataset comprises 1,026 audio recordings.

4 Methodology
4.1 RAG Pipeline
The RAG (Retrieval-Augmented Generation) [26] pipeline consists
of three key components:

• Knowledge Base: A collection of documents used to gener-
ate answers.

• Retriever: A model responsible for identifying the most
relevant documents for a given query.

• Answer Generator (LLM): A Large Language Model that
generates answers based on the retrieved documents and
the query.

Given a question 𝑄 , the pipeline operates in two steps:
(1) Retrieval Step: The retriever identifies the top-k docu-

ments that are semantically similar to the query.
(2) Generation Step: The LLM uses the retrieved documents

and the query as context to generate an answer.
In our evaluations, we use text-embedding-3-large [3] (with

an embedding dimension of 1024) as the retrieval model. We choose
multiple LLM models gpt-4o-mini [8], qwen2.5:3b [33], llama3.2:3b
[9], gemma2:2b [38] and 6 bit quantized mistral:7b [19] that are
suitable for production-level chatbots, both open-source and close-
sourced. To ensure reliability and avoid hallucinations, we prompt
the LLM to provide a response only if the answer is present in
the top-k retrieved documents. If the answer is not found, the
LLM returns a predefined No_answer response:

“I don’t have an answer to your question. My knowledge
is based on the information provided by the government
for your role. Please try rephrasing your question or ask
something else related to your role.”

4.2 Experiment Details
To evaluate the robustness of the system, we examine the response
generated by the RAG pipeline to the transformed queries generated
in the Section 3 and compare it with response generated by the
original queries.

(1) Query Transformation: For a given query 𝑞, we apply a
transformation function to create a modified version of the
query, denoted as 𝑞′.

(2) Pipeline Execution: Both the original query 𝑞 and the
transformed query 𝑞′ are independently processed through
the RAG pipeline to generate answer and the sources.

(3) Comparison of Outputs: The answers generated for 𝑞 and
𝑞′ along with the retrieval metadata (Document Name and
Pages) are then compared to assess similarity in answer and
correctness of the retrieved sources. Specifically, we analyze:
• Semantic Similarity:Whether the answers convey the
same meaning, despite the query transformation.

• Retrieval Differences: Any variations in the top-𝑘 doc-
uments retrieved for 𝑞 and 𝑞′, which could impact the
quality of the generated answers.

4.3 Answer Response Evaluation
Weevaluate responses to transformed queries𝑅′ and original queries
𝑅 using both human and LLM evaluators. The LLM evaluator offers
scalability for testing variations, while human evaluation validates
the findings.

LLMEvaluator:WeuseGemini-1.5-Flash [37] to score responses
(0, 0.5, or 1) based on similarity between 𝑅 and 𝑅′ , as outlined in
Appendix 8.2. We compute the mean LLM score for transformed
query responses per transformation function and a weighted aggre-
gate score across all functions, based on the number of transformed
queries per transformation function.

Human Evaluation: We sample 150 transformed queries (15
per transformation function) and ask a medical expert to compare
the responses 𝑅′ and 𝑅. For each 𝑅′ , we answer ‘Yes’ or ‘No’ to
these questions: (1) Does overall meaning and intent of 𝑅′ same
as 𝑅?, (2) Does 𝑅′ include all key information from 𝑅? Scores are
assigned: 1 if both are ‘Yes’, 0.5 if one is ‘Yes’, and 0 if both are
‘No’. We then average these scores across all transformed query
responses for each model.

Reference based Evaluation:We use below mentioned refer-
ence based metrics to compare R and 𝑅′.

(1) ROUGE-L score (recall) [29] : Suppose there are 2 se-
quences H and G, rougeL score is the ratio of length of
longest common subsequence (LCS) between H and G to
the total number of unigrams in G. We calculate rougeL
score between between 𝑅′ and 𝑅.

(2) Cosine Similarity: We measure cosine similarity between
embeddings of 𝑅′ and 𝑅 created using 1024 dimensions of
text-embedding-3-large embedding model [3].

4.4 Retrieval Recall
Our pipeline returns the pages it retrieved from the Knowledge
Base, along with the answer. To observe the effect of input trans-
formations on the retrieval abilities of the pipeline we compare the
retrieval recall [6] between original queries and their transformed
queries, which are generated using a transformation function.

(1) Recall@k : Whether the relevant page is present among
top-k (we used k=5) retrieved pages.

(2) Retrieval recall for original and transformed queries:
• For each original query 𝑞𝑖 , we calculate recall@k, denoted
as 𝑟𝑟original𝑖 .

• For each transformed query 𝑞𝑖 𝑗 (a variation of the original
query 𝑞𝑖 , where j is a variation ), we compute recall@k,
denoted as 𝑟𝑟transformed𝑖 𝑗 .

(3) Change in retrieval recall
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• Average recall of transformed queries: For each origi-
nal query, we compute the average recall@k across all its
transformed variations.

𝑟𝑟transformed𝑖 =
1
𝑛

𝑛∑︁
𝑗=1

𝑟𝑟transformed𝑖 𝑗 (1)

where n is the total number of transformed queries of the
original query 𝑞𝑖 .

• Difference in retrieval recall (Δ𝑖 ): The difference be-
tween the retrieval recall of the original query and the
average recall of its transformed queries is calculated as:

Δ𝑖 = 𝑟𝑟original𝑖 − 𝑟𝑟transformed𝑖 (2)
(4) Average Change in Retrieval Recall across all queries:

• We calculate the average change in recall across all original
queries.

Δ =
1

𝑁original

𝑁original∑︁
𝑖=1

Δ𝑖 (3)

where 𝑁original is the total number of original queries.

5 Results
5.1 Retrieval Recall results
Table 1 presents the average recall@k difference between original
queries and their transformed counterparts for each transformation
function. On average, we observe a 4% drop in retrieval recall for
transformed queries compared to the original queries. This shows
that the retrieval part is affected by the input perturbations. In the
next few sections we will focus on the answer changes.

Table 1: Δ denotes the average difference in retrieval recall be-
tween the original query and its transformed queries, which
are generated using a specific transformation function.

Transformation Function Δ

Add 0.04
Remove 0.07
Substitute 0.06
Swap 0.04

Paraphrasing 0.05
Phonetic-sound 0.08

Split-word 0.05
Medical terms 0.06

5.2 Answer Response Evaluation Results
In this section, we analyze the impact of input perturbations on
output responses. We begin by examining the occurrence of No
_Answer responses in original queries and compare themwith those
in transformed queries. On average, transformed queries result in
12-17% more No_Answer responses as compared to orginal queries
across different models, suggesting that input perturbations can
negatively impact the user experience. Despite having the necessary
knowledge, the RAG pipeline fails to answer certain queries due to
these perturbations. Table 2 contains the occurence of No_answers

Table 2: percentage difference in count of No_answer re-
sponses to original queries and transformed queries

LLM model Avg % diff in
No_answer response counts

gpt-4o-mini -16.74
qwen2.5:3b -12.97
llama3.2:3b -12.44
gemma2:2b -12.93

mistral:7b[Q6_k] -11.81

across different models we tested. From the table 3, we observe that
phonetic similarity mistakes get more of No_Answer responses as
compared to other transformations.

We further compare the responses for the queries which gener-
ated answer other than No_answers across the following robustness
metrics:

• 𝐿𝑔𝑜 denotes the LLM evaluator score comparing ground truth
responses of original queries with LLM-generated responses
to the same queries.

• 𝐿𝑜𝑡 represents the mean LLM evaluator score comparing
responses generated from original queries and their trans-
formed variants.

• 𝐿𝑔𝑡 is the mean LLM evaluator score comparing ground truth
responses with responses to transformed queries.

• 𝑅𝑜𝑢𝑔𝑒𝑜𝑡 indicates the ROUGE-L score between responses to
original and transformed queries.

• 𝐶𝑜𝑠𝑖𝑛𝑒𝑜𝑡 measures the cosine similarity between vector em-
beddings of responses to original and transformed queries.

Aweighted aggregate score is computed for eachmetric across all
transformation functions, where theweight corresponds to the num-
ber of transformed queries generated by each transformation func-
tion. Higher values (closer to 1) for metrics 𝐿𝑔𝑜 , 𝐿𝑜𝑡 , 𝐿𝑔𝑡 , 𝑅𝑜𝑢𝑔𝑒𝑜𝑡 ,
and 𝐶𝑜𝑠𝑖𝑛𝑒𝑜𝑡 indicate greater similarity between responses and,
consequently, higher robustness to these transformations.

From Table 4 and Table 5, we observe variations in the responses
generated by LLMs for transformed queries. However, there is no
significant difference between the ground truth answers and re-
sponses to transformed queries, suggesting that LLMs either reject
answering or provide responses largely comparable to the ground
truth.

Furthermore, in Table 5, the scores for each transformation func-
tion confirm that responses generated by GPT-4o-mini for trans-
formed queries are mostly similar to those for original queries.
Notably, GPT-4o-mini also has the highest rate of No_Answer re-
sponses, indicating that it may be a more conservative model. This
suggests that GPT-4o-mini may be more robust to perturbations,
rejecting uncertain queries while still generating answers when
confident in their correctness. Human evaluation results also exhibit
a similar pattern across different models, aligning with the LLM
evaluator’s assessments. Table 6 presents the human evaluation
results.

Furthermore, we analyze how the divergence between responses
to original and transformed queries increases as the mistake level
in the query rises. This trend is illustrated in Figure 1.



Evaluating Robustness in LLM-based Medical Chatbots 2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, Yokohama, Japan

Table 3: percentage difference in count of No_answer responses for original and transformed queries across each transformation
function.

Perturbation Type Character Word Sentence

LLM model Add Remove Substitute Swap Split word Phonetic similarity Medical terms Paraphrasing
Support 7410 7281 7381 7300 7312 5096 6542 506
gpt-4o-mini -18 -17 -21 -17 -11 -27 -9 -8
qwen2.5:3b -14 -12 -16 -13 -6 -26 -8 -1
Llama3.2:3b -14 -11 -16 -12 -6 -25 -7 -2
gemma2:2b -14 -11 -15 -13 -8 -24 -9 -4
mistral:7b[Q6_k] -13 -11 -14 -12 -6 -22 -8 -2

Table 4: Response Evaluation of various LLM models.

LLM model 𝐿𝑔𝑜 𝐿𝑜𝑡 𝐿𝑔𝑡 𝑅𝑜𝑢𝑔𝑒𝑜𝑡 𝐶𝑜𝑠𝑖𝑛𝑒𝑜𝑡

gpt-4o-mini 0.73 0.86 0.73 0.83 0.96
qwen2.5:3b 0.59 0.68 0.56 0.63 0.9
Llama3.2:3b 0.51 0.58 0.48 0.59 0.83
gemma2:2b 0.41 0.55 0.38 0.47 0.84

mistral:7b[Q6_k] 0.37 0.5 0.35 0.46 0.84

Table 5: 𝐿𝑜𝑡 and 𝐿𝑔𝑡 scores of each transformation function for various LLM models. The highest score among various LLM
models for each transformation function is shown in bold.

Perturbation Type Character Word Sentence

Transformation Function Add Remove Substitute Swap Split word Phonetic similarity Medical terms Paraphrasing
Support 7410 7281 7381 7300 7312 5096 6542 506
Score 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡 𝐿𝑜𝑡 𝐿𝑔𝑡

gpt-4o-mini 0.86 0.74 0.85 0.72 0.85 0.72 0.86 0.73 0.86 0.73 0.85 0.73 0.88 0.73 0.82 0.71
qwen2.5:3b 0.68 0.56 0.66 0.55 0.65 0.55 0.68 0.56 0.7 0.58 0.66 0.55 0.73 0.59 0.67 0.56
Llama3.2:3b 0.59 0.48 0.56 0.45 0.55 0.46 0.59 0.48 0.59 0.49 0.55 0.46 0.65 0.52 0.57 0.46
gemma2:2b 0.55 0.39 0.53 0.37 0.53 0.38 0.56 0.38 0.58 0.39 0.48 0.37 0.6 0.38 0.52 0.38
mistral:7b[Q6_k] 0.51 0.36 0.49 0.34 0.48 0.34 0.5 0.35 0.52 0.35 0.44 0.33 0.56 0.36 0.48 0.37

Table 6: 𝐿𝑜𝑡 and Human evaluation score on the 150 sample
transformed queries.

LLM model 𝐿𝑜𝑡 Human Eval
gpt-4o-mini 0.86 0.92
qwen2.5:3b 0.71 0.78
Llama3.2:3b 0.58 0.71
gemma2:2b 0.57 0.6

mistral:7b[Q6_k] 0.51 0.54

There is not much difference however for the generated re-
sponses across different transformation functions, as can be seen
in Table 5

5.3 ASR Transcriptions
The audio recordings in our dataset are transcribed using theAI4Bharat
Indic ASR model [4]. We evaluate the robustness of our system to

ASR-generated transcriptions by measuring the percentage differ-
ence in No_answer response counts between baseline queries and
their transcriptions. Additionally, we report the LLM evaluator
score 𝐿𝑜𝑡 between responses to baseline queries and ASR transcrip-
tions. As shown in Table 7, all LLMs exhibit a slight increase in
No_answer responses for ASR transcriptions compared to baseline
queries. This suggests that errors introduced by the speech recogni-
tion model can prevent the RAG system from generating an answer,
even when the correct information is available in the knowledge
base. On observation, the transcription errors usually are more
prevalent in domain-specific terminologies, for example, while ask-
ing about colostrum, it was picked as chlorostem; asphyxia was
picked as X physia; completely changing the meaning of what the
user asked.

Notably, GPT-4o-mini achieves a higher 𝐿𝑜𝑡 score than other
LLMs, indicating greater robustness in its responses to ASR-transcribed
queries. These findings highlight the importance of improving up-
stream components like ASR, as errors in transcription can have
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Figure 1: 𝐿𝑜𝑡 score of various LLM models across different
Mistake levels.

a cascading impact on the overall utility of the system. Enhanc-
ing ASR accuracy can help ensure that the benefits of LLM-based
technologies reach a wider user base.

Table 7: Above Table shows average difference in No_answer
response counts between baseline queries and its ASR tran-
scriptions for different LLM models.

LLM model 𝐿𝑜𝑡
Avg % diff in

No_answer response counts
gpt-4o-mini 0.80 -5
qwen2.5:3b 0.57 -8
Llama3.2:3b 0.52 -5
gemma2:2b 0.73 -7

mistral:7b[Q6_k] 0.69 -4

5.4 Out of Domain queries
In our RAG pipeline, we prompt the LLM to respond only to queries
if the answer is found in the context provided by retrieval model.
Ideally our pipeline should generate No_answer responses for all
the out of domain queries.

Table 8: Comparison of fraction of No_Answer responses for
out-of-domain queries across different LLMs in a RAG set-
ting.

LLM model Fraction of
No_answer responses

gpt-4o-mini 1
qwen2.5:3b 0.93
Llama3.2:3b 0.95
gemma2:2b 0.72

mistral:7b[Q6_k] 0.71

Table 8 presents the fraction of out-of-domain queries for which
the pipeline generated a No_answer response. Notably, GPT-4o-
mini produced a No_answer response for 532 out of 533 queries,
demonstrating strong robustness in handling out-of-domain inputs.
In contrast, models like Gemma and Mistral performed worse, in-
dicating a higher tendency to generate responses even when the
query falls outside the system’s knowledge scope which is not ideal
for a production-settings.

6 Conclusion
In this work, we propose the need and a methodology to evaluate
the robustness of Retrieval-Augmented Generation (RAG) systems
against various types of real-world noise, such as typos and im-
perfect Automatic Speech Recognition (ASR) transcriptions. Our
evaluation results demonstrate the impact of input errors on the
RAG pipeline, emphasizing the importance of stress-testing for
robustness before deploying such systems in real-world settings.
These findings underscore the need for rigorous testing to ensure re-
liability and effectiveness, particularly in high-stakes applications
like healthcare. Potential solutions to mitigate these effects like
spell-checkers or using language models for input correction can
be explored.

7 Limitations
We evaluated the robustness of LLMs in a RAG setting on English
queries except the ASR transcriptions. Our future work will extend
this to multilingual queries. The current work evaluated 5 LLMs
chosen based on their practicality in the production environment
due to their relatively smaller size. The pipeline proposed is however
model-agnostic given the rapid evolvement of the LLMs.
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8 Appendix
8.1 Prompts used to create transformed queries

using various Transformation functions.
Transformation function: Paraphrasing

System Prompt:
f”’You will be given a query in triple quotes. Your task is to
paraphrase the words within the query, without changing
the overall meaning and context. Output should contain
only the modified query. \n {query}”’.

Transformation function: Phonetic similarity

System Prompt:
f"You will be given a list of words in triple quotes, each of
which you need to modify to create a phonetically similar
word with different spelling. Return the output as a JSON
object, where each original word is a key, and its modified
word is the value.\n ”’{list of words}”’"

Transformation function: Medical terms

Prompt used to Detect medical terms:
f"Given a medical query enclosed in triple quotes, identify
and extract terms related to healthcare. Return the out-
put as a JSON object with key ‘Medical_terms’ and value
contains list of relevant healthcare terms. Ensure that the
extracted terms retain their original spelling and letter cas-
ing exactly as they appear in the query.\n ”’query”’"
Prompt used to introduce spelling errors in medical
terms
f"Given a medical term enclosed in triple quotes, generate
a list of 10 unique incorrect variations of the medical term
by introducing spelling and typographical mistakes. Out-
put should be a json object with key as medical term and
value is the list of erroneous terms. Ensure that all varia-
tions are unique and realistic and also variations should
not be same as original medical term.\n ”’medical_term”’"

Prompt used to generate Out of Domain queries

System Prompt:
f"We have an ASHAHealth Assistant that responds to med-
ical queries posed by ASHA workers. We aim to evaluate
the robustness of the Health Assistant to out-of-domain
queries that are unrelated to healthcare. Given a domain
enclosed in triple quotes, generate at least 50 to 100 queries
related to that domain in a JSON object, with keys labeled
as ’domain’ and ’queries’ \n ”’{domain}”’"

8.2 LLM Evaluator
Prompt used to compare between the ground truth and generated
answer.

System Prompt:
You will be provided with two answers related to primary
healthcare: a ground truth answer and a generated answer.
Your task is to compare the two answers and assign an
LLM score based on the following criteria:
Semantic Similarity: The overall meaning and context
and intent of the generated answer are the same as the
ground truth answer. Ignore minor differences such as
synonyms, grammar, punctuation, or formatting, as long
as the meaning remains unchanged.
Key Information: The generated answer should not omit
critical details from the ground truth. Do not penalize if
the generated answer includes additional information that
is correct and relevant.
Scoring:

• 1: Both criteria are fully satisfied. The generated
answer accurately captures both the meaning and
all key information of the ground truth answer.

• 0.5: The first criterion is satisfied but second crite-
rion (Key Information) is not satisfied.

• 0: Neither of the criteria is satisfied.
Additionally, provide a reason for the assigned LLM score.
Output should be a json object with keys as ‘llm_score’
and ‘reason’.

8.3 Dataset Preparation

Figure 2: Sample size of each mistake level in robustness
dataset. Numbers on each bar represents number of queries
in each mistake level.
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Figure 3: Distribution of query themes across the evaluation dataset. Number on each bar represents number of queries in each
theme.

Table 9: Examples of transformed queries with various perturbation along with original query. All modified words in the
transformed queries are highlighted in red.

Transformation
Function Support Perturbation

level
Transformed

query
Original Query 509 None What are risk factors for diseases of the ear

Add 7410 character What arze grisk fakctors jfor diseasaes of thqe ear
Remove 7281 character Wat ae ris factors or diseses of he ear
Substitute 7381 character Whst ars risk factord fir diseqses pf fhe eqr
Swap 7300 character What are irsk afctors ofr diseases fo hte era

Split word 7312 word Wh at ar e risk f actors for dise ases of th e e ar
Phonetic similarity 5096 word What are risc fakturz for dizeez of the ear
Medical terms 6542 word What are risk factors for diseasess of the ear
Paraphrasing 506 sentence What are the contributing factors for ear diseases?
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