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ABSTRACT
Large language models (LLMs) are increasingly used to assist com-
putational social science research. While prior efforts have focused
on text, the potential of leveraging multimodal LLMs (MLLMs) for
online video studies remains underexplored. We conduct one of the
first case studies on MLLM-assisted video content analysis, com-
paring AI’s interpretations to human understanding of abstract
concepts. We leverage LLaVA-1.6 Mistral 7B to interpret four ab-
stract concepts regarding video-mediated self-disclosure, analyzing
725 keyframes from 142 depression-related YouTube short videos.
We perform a qualitative analysis of MLLM’s self-generated ex-
planations and found that the degree of operationalization can
influence MLLM’s interpretations. Interestingly, greater detail does
not necessarily increase human-AI alignment. We also identify
other factors affecting AI alignment with human understanding,
such as concept complexity and versatility of video genres. Our
exploratory study highlights the need to customize prompts for
specific concepts and calls for researchers to incorporate more
human-centered evaluations when working with AI systems in a
multimodal context.

KEYWORDS
Multimodal Information, Large Language-and-VisionAssistant (LLaVA),
User Generated Content, Content Analysis
ACM Reference Format:
Jiaying "Lizzy" Liu, Yiheng Su, and Praneel Seth. 2018. Can Large Language
Models Grasp Concepts in Visual Content? A Case Study on YouTube
Shorts about Depression. In CSCW 24. ACM, New York, NY, USA, 10 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Video-sharing platforms such as YouTube [31], TikTok [41], and
Instagram [2] are rich data sources for research in human-computer
interaction and computational social sciences. However, traditional
methods for analyzing videos, like digital ethnography [24] and
content analysis [13], are labor-intensive with limited scalability [4].
∗Both authors contributed equally to this research.
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Consequently, there is a rising demand for automated approaches
to analyze multimodal (visual, textual, audio) content [5].

One successful strategy is leveraging LLMs to augment text-
based content analysis, improving open coding efficiency [10] and
enabling collaborative coding frameworks [16, 48]. Emerging Multi-
modal LLMs (MLLMs) like LLaVA [29] and GPT-4 [38] demonstrate
promise for understanding visual information at scale [46]. How-
ever, few works have investigated how MLLMs can best assist
content analysis of videos [44, 50]. Preliminary work [34] suggests
that MLLMs may struggle to capture abstract visual concepts, such
as video presentation style [32], limiting their applications beyond
objective entity or action recognition in video analysis [1, 8].

This case study thus aims to explore the capability of MLLMs to
understand abstract concepts in multimodal contexts. Specifically,
we investigate how LLaVA-1.6 Mistral 7B interprets four concepts
related to depression and self-disclosure behaviors in short YouTube
videos, assessing theMLLM’s alignmentwith human understanding.
We aim to explore:
RQ1: How can social concepts be operationalized to guide MLLMs

in interpreting video content?
RQ2: What factors affect MLLM’s alignment with human interpre-

tations of social concepts in videos?
Echoing the emerging trend of LLM-assisted content analysis,

our case study is one of the earliest efforts to leverage MLLMs
for video content analysis: 1) We experiment with harnessing an
MLLM for annotating abstract visual concepts with structured and
explainable outputs; 2) We examine the MLLM’s explanations and
reveal contextual factors that affect MLLM’s alignment with human
understanding of abstract social concepts. 3) We discuss implica-
tions for designing robust, human-centered workflows for future
MLLM-assisted video content analysis.

2 CONTEXT: MENTAL HEALTH DISCLOSURE
THROUGH VIDEOS

Individuals increasingly use digital platforms to share their men-
tal health experiences and seek support online [14]. While prior
research has extensively focused on text-based platforms like Twit-
ter [11] and Reddit [40], visual-based platforms like Instagram [3]
and YouTube [21, 33] are growing in popularity for self-disclosure
documentation.

Similar to the influence of linguistic features on engagement
for text-based social media posts, prior studies have highlighted
the significant role of visual representations in shaping audience
perception [20] and engagement [28]. However, which specific fea-
tures of the visual representations and how they influence audience
engagement remain unclear. This study is part of a larger project
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to investigate how visual features moderate the relationship be-
tween self-disclosure and video engagement (e.g., likes, comments)
in depression-related YouTube shorts, which can inform the design
of more supportive communities on video-sharing platforms. Given
the challenges of manual annotation for large-scale video content
analysis, we leverage MLLMs for assistance.

We selected four concepts (Table 1) that shape video-mediated
self-disclosure. Presenting and interacting styles represent distinct
approaches to structuring and delivering video narratives, which
influence audience engagement [2, 25]. Visual diversity and arousal
are unique for video-based communication, influencing viewers’
attention and perception of content engagement [36, 42]. These vi-
sual characteristics are indicative cues to determine how effectively
mental health content resonates with and engages viewers.

3 METHODOLOGY
3.1 Dataset
Using the query "depression" with the YouTube Data API, we col-
lected the metadata (e.g., title, channel, duration) of 3,892 videos
uploaded by February 2024. We randomly selected 150 videos and
downloaded them using YoutubeDownloader1. Following , due to
computational constraints and current MLLM’s limited context
window to process videos [19], we applied FFmpeg [45] to extract
keyframes instead, resulting in 800 keyframes. After labeling and
filtering out low-quality frames (e.g., transitional frames, blurry,
black screens), we obtained 725 keyframes across 142 videos.

Our study qualifies for exemption under our Institutional Review
Board guidelines. Nevertheless, recognizing the sensitive nature
of mental health topics, we safeguard video creators’ privacy by
anonymizing their identities through obscuring facial features. Fur-
ther discussion of ethical considerations can be found in Appen-
dix C.

3.2 MLLM Concept Annotation: Models and
Prompts

We select llava-v1.6-mistral-7b-hf2 [30] for analysis, and will
henceforth refer to this model as (the) MLLM for convenience. To
investigate the MLLM’s comprehension of abstract visual concepts
(Table 1), operationalizing these concepts is essential for articulating
them effectively. To address RQ1 and explore how to operationalize
the concepts for MLLM prompt configuration, we tested four strate-
gies to evaluate their effectiveness. Specifically, we implemented
four prompting configurations with progressively increasing levels
of operational guidance to strike a balance between clarity and
flexibility. See Appendix A for all prompt configurations.

• Naive: The MLLM is directly queried for the presence or
extent of the concept without any additional contexts.

• Simple: A short definition is added to the naive query.
• Detailed: A detailed definition with three abstract manifes-
tations is added to the naive query.

• Open-minded: Similar to the detailed prompt, but also ex-
plicitly encourages the MLLM to consider other scenarios
not already stated.

1https://github.com/Tyrrrz/YoutubeDownloader
2https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

Figure 1: Examples of human interpretations of the four
selected concepts. We annotate Yes/No for presenting and
interacting, High/Low for diversity and arousal. We then
compare human interpretations with the MLLM interpreta-
tions to evaluate human-AI alignment.

Our prompting configurations are informed by established prac-
tices in prompt engineering. For instance, the Detailed configura-
tion aligns with in-context learning by incorporating prototypical
examples to serve as implicit "demonstrations" [37]. Similarly, the
Open-minded configuration is inspired by chain-of-thought, which
uses directives like "think step-by-step" to encourage more flexible
interpretations [23]. We do not experiment with advanced configu-
rations such as in-context learning or fine-tuning [12, 18], as we
are interested in assessing the MLLM’s off-the-shelf capabilities.

We tasked the MLLM with annotating each keyframe across
four concepts: Yes/No for interacting and presenting, and High/Low
for arousal and diversity. To ensure consistency, we prompted the
MLLM to provide both interpretations and explanations simulta-
neously, reducing the likelihood of generating contradictory or
hallucinated explanations. Keyframes were queried in temporal
order for each video, while the order of prompt configurations
and associated concepts was randomized per keyframe to mitigate
potential biases. Occasionally, the MLLM combines annotations
(e.g., Yes/No) with explanations [32]. To isolate explicit annota-
tions, we utilized Llama-3.1-8B-Instruct3 to parse the MLLM’s
interpretations. Following this, we manually reviewed all extracted
annotations to verify the accuracy of the parsing process.

3.3 Human Annotation Process
To obtain human interpretations, two authors independently coded
a random sample of 200 keyframes, with a third author providing
an additional vote to resolve disagreements. Figure 1 illustrates
examples of human interpretations. After discussing disputes in a
group meeting and ensuring that Intercoder Reliability (ICR) [39]
3https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
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Table 1: Four abstract visual concepts shaping video-mediated self-disclosure.

Concept Definition

Presenting Presenting style involves the delivery of information, typically accompanied by visual aids like slides or graphics [22].

Interacting Interacting refers to creators establishing a simulated interpersonal relationship with their audience, fostering a sense of engagement and connection
[22].

Diversity Diversity of an image includes varied scenes, color variation, compositional complexity, and originality of the image [42].

Arousal Arousal refers to the degree of alertness or excitement elicited by the stimulus such as dynamic visual elements and emotional intensity [36].

is higher than 75%, the three coders split the remaining keyframes
and coded them separately. We dropped ambiguous keyframes and
low-quality images (e.g., transitional frames, blurry, black screens)
from further analysis. Ultimately, we obtain 725 frames across 142
videos with human concept annotations.

3.4 Data Analysis
Quantitative Comparisons. To compare the four prompt config-
urations, we quantify human-AI (mis)alignment as the consistency
between a prompt-concept pair and the corresponding human an-
notations. We then employ the bootstrapping approach from Berg-
Kirkpatrick et al. [6] to assess how human-AI alignment differs
across configurations per concept. Please see Appendix B for de-
tails. We discuss quantitative comparisons in Section 4.1.

Qualitative Analysis. To investigate the underlying factors be-
hind human-AI (mis)alignments, we first curated a focused dataset
of instances where the MLLM’s annotations diverged when us-
ing different prompting configurations. Two authors then indepen-
dently conducted thematic analysis [7] on the MLLM’s explanations
for these keyframes. They met weekly to discuss emerging themes
and patterns in the data, resolve any coding discrepancies through
detailed discussion, and iterate on the coding scheme to establish
definitions for each thematic category. The analysis focused on
several key dimensions, including the nature and patterns of anno-
tation changes, the MLLM’s reasoning and justification for mod-
ifications, contextual factors that appeared to influence changes,
and the relationship between prompting configuration and anno-
tation stability. We summarize recurring themes and patterns in
Section 4.2.

4 FINDINGS
4.1 Quantative Evaluation of MLLM-Human

Alignment
Figure 2 shows the distribution of bootstrapped alignment scores
across prompt configurations for each concept. The MLLM demon-
strates varying capabilities: no single prompt configuration consis-
tently achieves the highest alignment.

The MLLM excels at abstract concepts like arousal and diversity
but exhibits lower alignment and more variance for performative
concepts like interacting and presenting. Under the naive approach,
the MLLM performs well for concepts like interacting, arousal, and
diversity, suggesting that the MLLM’s prior knowledge of these con-
cepts (derived from pre-trained data) aligns well with corresponding
human conceptions. We only observe substantial alignment gains
with more operationalization guidance for presenting. However,
this effect is not monotonic (e.g., a more detailed prompt does not

always lead to better alignment) and does not generalize to other
concepts. Adding definitions may decrease alignment for present-
ing and interacting, restricting the MLLM’s capabilities. We discuss
the factors that impact annotations in Section 4.2.

Figure 2: Distribution of bootstrap alignment scores across
prompt configurations and concepts. The MLLM demon-
strates varying capabilities: no single prompt configuration
consistently achieves the highest alignment across all con-
cepts.

4.2 Factors Affecting MLLM-Human
(Mis)Alignment

Evidently, concept operationalization is a key factor influencing
human-AI alignment. By analyzing the MLLM’s explanations, we
offer qualitative insights into how and why operationalization im-
pacts alignment. Additionally, we identify two further factors con-
tributing to human-AI (mis)alignment: concept complexity and the
diversity of genres.

4.2.1 VaryingConcept Specification Concept specification refers
to the amount of detail in the prompts. For interacting and present-
ing (Figure 2), auxiliary definitions may inadvertently prioritize
"what is in the prompt" over the holistic context of the image,
causing the MLLM to be less aligned with human perceptions. In
contrast, the naive approach shows greater flexibility in captur-
ing novel categories of presenting and interacting communication
styles.
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Figure 3: Problematic MLLM Annotations.

Figure 3-(a) illustrates the variability in the MLLM’s interpreta-
tion of presenting style. When prompted naively, the MLLM cor-
rectly identifies (a) as presenting, stating that the superimposed cap-
tion is “a common technique used in presentations”, complemented
by “the person’s facial expression, which appears to be a smile”. Con-
versely, when prompted with simple or detailed configurations,
the MLLM misclassifies (a), citing “no visible slide or graphic that
would be associated with a presentation” as evidence. This misclas-
sification occurred because the detailed prompts explicitly exem-
plified presenting styles as "slides or graphics," limiting the MLLM
from considering informal contexts of presenting style. In contrast,
the openminded configuration correctly identifies (a), further un-
derscoring that additional details can enhance clarity but reduce
alignment if not carefully operationalized.

Without definitional constraints, the naive configuration can
better capture nuanced social dynamics. In Figure 3-(b), the MLLM
accurately described the interactive potential, noting the “dynamic
and engaging” style of the image to “[invite] the viewer to observe
and possibly speculate about what is happening.” However, when
prompted with a detailed configuration, the MLLM incorrectly
claims that the image “is a still photograph” with “no indication
of a simulated interpersonal relationship or engagement with an
audience”.

We consistently observe this pattern of contradictory decisions
for presenting and interacting queries, where explanations often
highlight the absence of explicit elements outlined in the prompt.
For example, keyframes without human presence or overt conver-
sational styles (Figure 3-(c)) were misclassified as non-interactive
despite employing engaging nontraditional styles such as memes.

4.2.2 Varying Complexity of Concepts The complexity and
scope of the four analyzed concepts vary, making some more chal-
lenging for the MLLM. For example, diversity is relatively straight-
forward, as it involves identifying and counting visual categories,
a common pre-training task for MLLMs. Figure 1 illustrates this:
the low-diversity image shows a plain background with simple
text overlays, while the high-diversity image features a vibrant
anime figure. Similarly, the MLLM effectively recognizes arousal
levels through visual cues like facial expressions, body language,
and visual intensity. In Figure 1, the low-arousal image depicts a
calm individual with relaxed features, while the high-arousal image
shows an abstract figure with intense body language indicating
distress.

In contrast, concepts like interacting and presenting are more
challenging because they require situating visual cues within con-
text. For instance, in the "Presenting-Yes" image (Figure 1), while
the hand gesture might initially suggest interaction, the gesture
is not directed at the audience but instead presents the scenario
encoded in the text overlay (“5th grade: Hey kid listen up”). In multi-
modal contexts, the meaning of one element (e.g., a visual cue) can
influence, support, or contradict another (e.g., text). This demand to
interpret co-dependent features holistically poses a novel challenge
absent in text-only settings.

When MLLM’s pre-trained knowledge diverges from human
conceptions, naive queries often result in misalignment. We ob-
serve this quantitatively, as the Naive alignment for presenting is
very low (Figure 2). Qualitatively, in the "Presenting-Yes" image
(Figure 1), the MLLM incorrectly states that the image does not
show presentation style, citing the absence of expected behaviors
like “a speaker standing at a podium or a lectern” and “a slide or a
graphic”. The MLLM fails to contextualize the informal setting and
gesture as a valid presentation style, thus struggling to adapt to
novel communicative contexts outside pretraining. Prompt engi-
neering can help, as the MLLM correctly identifies this image for
all other configurations besides naive.

4.2.3 Versatile Video Genres The versatility of videos can chal-
lenge the MLLM’s ability to understand social concepts. We identify
two genres with relatively low alignment, highlighting the com-
plexities of interpreting diverse content.

Mixture of textual and visual elements. Short videos often com-
bine visuals with overlaying text, as shown in Figure 3-(a, c, d).
When visual signals conflict with textual information, MLLMs (typi-
cally) prioritize textual over visual cues (since they were pre-trained
with more text data), potentially leading to misinterpretations. For
example, in Figure 3-(d), the MLLM reasons that the image “does
not directly portray an interacting style...as it is static” but the text
overlay “implies a narrative or a message that is meant to convey a
sense of interaction.” Effectively synthesizing two potentially con-
flicting sources of information—visual and textual—is a unique and
open challenge for MLLMs.

Non-human genres. Resonating Zhong and Baghel [52], theMLLM
struggles to interpret non-human video genres such as cartoons,
memes, and abstract art, which often require cultural, emotional, or
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other contextual knowledge for accurate interpretations. For exam-
ple, Figure 3-(e) depicts a hand-drawn image of self-harm behaviors,
potentially signaling interaction intentions such as a call for help.
However, the MLLM failed to recognize implicit interaction cues
and explained that “the drawing...does not exhibit any conversational
language or behaviors that would suggest an interacting style”. Fine-
tuning or more sophisticated prompt engineering is likely needed
to educate the MLLM on a broader range of visual storytelling
techniques and cultural references.

5 DISCUSSION AND FUTUREWORK
We conduct an exploratory study with a single model, limited sam-
ples, and simple prompts, so our findings may not be generalizable.
Computational constraints further prevented the inclusion of tem-
poral context in videos, which may limit our findings. Despite these
limitations, our study offers insights into the potential of leverag-
ing Multimodal Large Language Models (MLLMs) to assist visual
content analysis. Recognizing the inherent subjectivity of social
concepts (even with high intercoder reliability), we use "alignment"
rather than "accuracy" and contextualize our quantitative statis-
tics with qualitative insights. Our analysis illuminates key factors
contributing to MLLM’s misalignment from human understanding,
including concept specifications, concept complexity, and versa-
tility of video genres, which must be considered carefully when
engineering prompts for MLLMs-assisted video content analysis.

5.1 Harnessing MLLMs for Large-Scale
Multimodal Content Analysis:
Opportunities and Challenges

MLLMs show potential in scaling visual content analysis. With
appropriate operationalization, our results show that the MLLM
can align highly with human perceptions, even for abstract con-
cepts like presentation style. By expediting manual labeling, which
is often time-intensive and costly [13], MLLM can enable more
comprehensive analyses of large datasets, potentially uncovering
rare communication patterns that might otherwise go unnoticed
in small-sample qualitative studies [35]. Furthermore, MLLMs can
enhance data quality by serving as a proxy for human intervention.
In our pipeline, the MLLM accurately labeled low-quality frames as
"Not Applicable," distinguishing them from frames that genuinely
lacked the desired concept. This capability can help researchers
filter noisy inputs by inspecting ambiguous model outputs and
explanations.

Despite their potential, MLLMs can be misaligned with human
perceptions. Our findings indicate that operationalizing abstract
concepts with greater detail can enhance alignment. However, it
may also risk constraining the MLLM’s ability to uncover novel
social dynamics beyond the specified criteria. This contrasts with
typical in-context or few-shot learning scenarios, where multiple
demonstrations help the model infer task structure and reduce am-
biguity by leveraging patterns recognized during pretraining [37].
In diverse social media content, models must balance consistency
with flexibility to adapt to dynamic contexts. Additionally, when
applying MLLM to analyze videos in the wild, style diversity is a
crucial factor impacting model alignment. The short videos in our
study are predominantly informal and casually filmed in everyday

settings. They differ from vlogs, tutorials, streams, or product re-
views, typically more structured and polished. Our findings show
that the MLLM can struggle to capture and interpret unconven-
tional visual cues, such as the novel yet subtle suggestion of suicide
depicted in Figure 3 (c). Developing and evaluating models that
can effectively navigate such ambiguity while maintaining align-
ment on more structured formats remains essential for advancing
multimodal analysis across diverse platforms.

5.2 Future Directions
We emphasize three directions to improve human-AI alignment in
(M)LLM-assisted visual content analysis: human-centered auditing,
multimodal synthesis, and temporality incorporation.

Implementing MLLM response auditing. In our case study,
MLLM interpretations often diverged from human concept under-
standing due to factors like concept complexity and the diversity of
video genres. Specifically, the MLLM may systematically misunder-
stand the visual cues of videos of specific genres, such as cartoons
and memes, as suggested in Section 4.2.3. Thus, it is crucial to im-
plement human-centered post hoc audits [47, 51]. Shen et al. [43]
developed a framework to audit the value alignment of humans
and language models to improve transparency and ethical use of AI
in social research. Future work can explore incorporating human-
centered evaluation as a standard step in MLLM-assisted content
analysis workflows [9, 17, 27, 49]. Such measures can facilitate the
iterative refinement of concept operationalization and prompt engi-
neering to address known biases in an AI’s understanding of social
concepts.

Synthesizingmultimodal inputs. In our current workflow, we
decode videos into keyframes and prompt the MLLM to annotate
concepts given isolated images. However, we can also incorporate
audio or transcripts to provide a more comprehensive analysis,
though interpreting signals from multiple input sources remains
challenging. Additionally, as discussed in Section 4.2.3, conflicting
information across different modalities can complicate interpre-
tations. Developing more sophisticated methods for synthesizing
multimodal inputs is thus a promising avenue for future research.

Incoporating video temporality. Some concepts require tem-
poral context for accurate interpretations. For example, concepts
like emotional valence and genre often depend on a holistic un-
derstanding of the video’s overall narrative [32], which isolated
keyframes cannot capture. Future work could explore MLLMs that
directly interpret videos or a sequence of keyframes to provide
more contextual information.

5.3 Ethical Considerations
Our findings suggest that human-AI misalignment may result in
systematic biases. Previous studies have reported LLMs’ biases
towards minorities and underrepresented populations, including
people with disabilities [15] and socially subordinate groups [26].
Future studies can work on identifying the potential biases in LLMs.

6 CONCLUSION
We conduct one of the earliest case studies on leveraging Multi-
modal Large Language Models (MLLMs) to interpret abstract social
concepts in video data. Our results underscore the importance of
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post-hoc auditing and human oversight to ensure agreement be-
tween AI outputs and human understanding. Future work should
explore the integration of multimodal inputs and experiment with
fine-tuning or in-context learning to enhance the model’s ability to
understand more complex social interactions.
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Table 2: LLaVA Prompts

Concept Strategy Prompt
Interacting Prompt 0 -

Naive
"<image>
USER: Does this picture portray an interacting style, yes or no? Explain your answer.
ASSISTANT:"

Prompt 1
- Simple
Definition

"<image>
USER: Interacting style refers to creators establishing a simulated interpersonal relationship with
their audience, fostering a sense of engagement and connection. Does this picture portray an
interacting style, yes or no? Explain your answer.
ASSISTANT:"

Prompt 2 - De-
tailed Defini-
tion

"<image>
USER: Interacting style refers to creators establishing a simulated interpersonal relationship with
their audience, fostering a sense of engagement and connection. This involves behaviors such as
directly addressing the audience, using conversational language, or acknowledging comments or
questions from viewers. Does this picture portray an interacting style, yes or no? Explain your
answer.
ASSISTANT:"

Prompt 3 -
Openminded

"<image>
USER: Interacting style refers to creators establishing a simulated interpersonal relationship with
their audience, fostering a sense of engagement and connection. This involves behaviors such as
directly addressing the audience, using conversational language, or acknowledging comments or
questions from viewers. These are just several examples, so be open-minded to other potential
scenarios of interacting style. Does this picture portray an interacting style, yes or no? Explain
your answer.
ASSISTANT:"

Presenting Prompt 0 -
Naive

"<image>
USER: Does this picture communicate in a presenting style, yes or no? Explain your answer.
ASSISTANT:"

Prompt 1
- Simple
Definition

"<image>
USER: Presenting style involves the delivery of information, typically accompanied by visual aids
like slides or graphics. Does this picture communicate in a presenting style, yes or no? Explain
your answer.
ASSISTANT:"

Prompt 2 - De-
tailed Defini-
tion

"<image>
USER: Presenting style involves the delivery of information, typically accompanied by visual aids
like slides or graphics, such as a businessman presenting slides, a student giving a speech on a
topic, or a general rallying troops for war. Does this picture communicate in a presenting style,
yes or no? Explain your answer.
ASSISTANT:"

Prompt 3 -
Openminded

"<image>
USER: Presenting style involves the delivery of information, typically accompanied by visual aids
like slides or graphics, such as a businessman presenting slides, a student giving a speech on a
topic, or a general rallying troops for war. These are just several examples, so be open-minded to
other potential scenarios of presenting style. Does this picture communicate in a presenting style,
yes or no? Explain your answer.
ASSISTANT:"

Arousal Prompt 0 -
Naive

"<image>
USER: What level of arousal does this image communicate, low, moderate, or high? Explain your
answer.
ASSISTANT:"
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Concept Strategy Prompt
Prompt 1
- Simple
Definition

"<image>
USER: Low arousal is associated with calmness, relaxation, or drowsiness. Moderate arousal is a
balanced state of alertness and engagement without overstimulation. High arousal is characterized
by heightened physiological and emotional activity. What level of arousal does this image commu-
nicate, low, moderate, or high? Explain your answer.
ASSISTANT:"

Prompt 2 - De-
tailed

"<image>
USER: Low arousal is associated with calmness, relaxation, or drowsiness. For example, feeling
fatigued or viewing a peaceful landscape or a calm, monochromatic image. Moderate arousal is a
balanced state of alertness and engagement without overstimulation, often linked with optimal
performance and involves minimal physiological activation. For example, feeling attentive or
focused; engaging in a conversation or viewing a moderately complex image. High arousal is
characterized by heightened physiological and emotional activity. For example, feeling excited,
anxious, or stressed; or viewing a dynamic or chaotic scene with bright colors or intense stimuli.
What level of arousal does this image communicate, low, moderate, or high? Explain your answer?
\nASSISTANT:"

Prompt 3 -
Open Minded

"<image>
USER: Low arousal is associated with calmness, relaxation, or drowsiness. For example, feeling
fatigued or viewing a peaceful landscape or a calm, monochromatic image. Moderate arousal is a
balanced state of alertness and engagement without overstimulation, often linked with optimal
performance and involves minimal physiological activation. For example, feeling attentive or
focused; engaging in a conversation or viewing a moderately complex image. High arousal is
characterized by heightened physiological and emotional activity. For example, feeling excited,
anxious, or stressed; or viewing a dynamic or chaotic scene with bright colors or intense stimuli.
These are just several examples so be open-minded to other potential scenarios of arousal levels.
What level of arousal does this image communicate, low, moderate, or high? Explain your answer?
\nASSISTANT:"

Diversity Prompt 0 -
Naive

"<image>
USER: What level of diversity does this image communicate, low, moderate, or high? Explain your
answer? \nASSISTANT:"

Prompt 1 -
Definition

"<image>
USER: The diversity of an image includes the color variation, compositional complexity, and
originality of the image. What level of diversity does this image communicate, low, moderate, or
high? Explain your answer? \nASSISTANT:"

Prompt 2 - De-
tailed

"<image>
USER: The diversity of an image includes the color variation, compositional complexity, and
originality of the image. Color variation involves assessing the range of colors across the image.
Compositional complexity involves the arrangement of diverse elements within the image. Origi-
nality assesses whether the image presents a new or uncommon perspective. What level of diversity
does this image communicate, low, moderate, or high? Explain your answer? \nASSISTANT:"

Prompt 3 -
Open Minded

"<image>
USER: The diversity of an image includes the color variation, compositional complexity, and
originality of the image. Color variation involves assessing the range of colors across the image.
Compositional complexity involves the arrangement of diverse elements within the image. Origi-
nality assesses whether the image presents a new or uncommon perspective. These are just several
examples so be open-minded to other instances of diversity. What level of diversity does this image
communicate, low, moderate, or high? Explain your answer? \nASSISTANT:"
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B BOOTSTRAPING DETAILS
To assess how human-AI alignment differs across configurations
for each concept, we employ a bootstrapping approach inspired
by the methodology outlined in Berg-Kirkpatrick et al. [6]. We
first collect a pool of generated annotations for each concept and
prompt configuration to compute an initial alignment score. How-
ever, relying on a single measure fails to capture the variability
inherent in the data, and observed differences across configurations
may arise purely by chance. This limitation makes it challenging to
draw reliable conclusions about the relative alignment of different
prompt configurations.

The bootstrapping approach addresses this issue by repeatedly
resampling the data to estimate the variability in alignment scores.
Specifically, we generate 𝑁 resampled datasets, each of size 𝐾 , by
randomly drawing annotations with replacement from the original
pool. An alignment score is computed for each resampled dataset,
resulting in a distribution of 𝑁 scores for each concept-prompt pair.
This distribution reflects the variability in alignment and enables us
to assess, on average, how reliably each prompting configuration
aligns with human perceptions across the selected social concepts
beyond random chance. We visualize these score distributions in
Figure 2) and discuss findings in Section 4.1.

C ETHICS STATEMENT
We are committed to conducting ethically responsible research,
ensuring content creators’ privacy, and safeguarding research team
members’ well-being. Since this study analyzes data on publicly
available platforms like YouTube, it qualifies for human subjects
exemption under our university’s Institutional Review Board (IRB)
guidelines, posing minimal risk to content creators (or individuals
present in the video). Nevertheless, we acknowledge that creators
could not provide explicit consent for the inclusion or exclusion of
their content. To respect the creator’s privacy, we implemented ad-
ditional protections, such as anonymizing individuals in the video
by obscuring facial features in any snapshots in this paper. Addi-
tionally, we do not collect personally identifiable metadata about
the creators or individuals presented in the videos.

Another ethical factor is the well-being of researchers exposed
to potentially distressing material, particularly during qualitative
analyses involving sensitive topics like depression. To mitigate
potential emotional harm, we provided team members access to
university mental health resources, encouraged breaks during data
analysis, and fostered an environment of open communication
about the work’s emotional impact.
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