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ABSTRACT 

In-context learning (ICL) in large language models (LLMs) 

improves performance across a wide range of tasks by 

utilizing a small number of in-context examples. A recent 

phenomenon has been reported in detecting depressive 

symptoms using social media postings, leveraging suitable 

examples from labeled depression corpora. Prompt-based 

explanations, on the other hand, has been recognized as an 

effective approach to better understand predictions derived 

from ICL. However, the interpretability of these synthetic 

explanations and their contribution to digital mental health 

(DMH) screening remain unclear. To address this, we propose 

PIFU, a novel theoretical framework for diverse stakeholders, 

including domain experts, to evaluate the interpretability of 

LLM-generated free-text explanations in DMH. We gather a 

cohort of clinicians (N=12), including certified psychologists 

and psychiatrists, to assess free-text explanations generated 

for depression and anxiety samples using a Likert scale rating 

system, followed by qualitative feedback in free-text form to 

develop human-interpretability metrics for plausibility, 

informativeness, and utility. We further reformulate 

faithfulness by focusing on predicting model decisions using 

explanations rather than gold labels. These human-centered 

metrics pave the way for promising advancements in 

interpretable LLM-based screening tools within the context of 

DMH. 
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1 Introduction 

Few-shot prompting of large language models (LLMs), which 

involves learning from a few in-context examples in prompts, 

has led to significant improvements across various natural 

language processing (NLP) tasks, including classification, 

multi-step reasoning, and summarization. These in-context 

examples, also called demonstrations, cast downstream tasks 

together with task-specific prompts into a frozen LLM format 

to achieve state-of-the-art (SOTA) in-context learning (ICL) 

performance in both in-domain and previously unseen tasks 

[4, 6]. A few recent approaches have been introduced to detect 

depressive symptoms in social media text conversations by 

leveraging suitable demonstrations from labeled depression 

data [11], and to support mental health interventions through 

the use of conversational agents such as chatbots [32, 33]. 

However, this entire process remains poorly understood, as 

models are influenced by factors such as the number, order, 

and diversity of demonstrations and may not utilize 

instructions or labels in the expected manner [5]. 

Prompt-based explanations has been recognized as an 

effective approach to better understand predictions derived 

from ICL [2]. Free-text explanations, a prominent category, 

have received increasing attention by providing detailed 

reasoning behind an LLM’s decisions, unlike extractive 

methods such as LIME and SHAP, which focus solely on input 

tokens [3]. Unlike predict-then-explain (P-E) approach, which 

generates the explanation after making a prediction, as seen in 

methods like SHAP, free-text explanations follow an explain-

then-predict (E-P) process, where explanations are generated 

before the model makes its prediction. However, the 

interpretability of these synthetic explanations and how they 

contribute to ICL downstream performance, including 

depression screening, remains unclear. 

Interpretability refers to how well the inner workings of a 

black-box model can be presented in understandable terms to 

a human [7]. Prior research has identified four key measures 

for evaluating the interpretability of explanations: plausibility, 

informativeness, utility, and faithfulness. Plausibility measures 

how convincing the explanation is to humans [1], while 

informativeness assesses how much new information is 

provided by the explanation to justify the prediction [8]. 

Utility measures the usefulness of the explanation for the 

target audience [9]. Faithfulness, on the other hand, explains 

the reasoning process behind the model’s prediction, meaning 

that human judgment should not be involved in evaluating 

faithfulness [10]. Although evaluating the interpretability of 

explanations is an active area of research, its adoption in 



 

 

 

 

domains such as digital mental health (DMH) has not been 

thoroughly explored. 

In this study, we propose a novel framework to evaluate 

the interpretability of LLM-generated free-text explanations in 

DMH. Our objective is to employ a cohort of experts, including 

certified psychologists and psychiatrists,  to evaluate synthetic 

free-text explanations generated for depression and anxiety 

samples on a Likert-scale (1-5) for consistency, reliability, and 

professionalism, while also prompting them to provide 

qualitative feedback in a free-text format. The rating values on 

consistency, reliability, and professionalism and free-text 

feedback are utilized to develop interpretability metrics for 

plausibility, informativeness, and utility. To the best of our 

knowledge, we are the first to construct a human 

interpretability framework for evaluating LLM-generated 

explanations in the context of DMH. We further reformulate 

faithfulness by applying the criteria of predictive power 

evaluation (PPE) [1, 10], focusing on predicting model 

decisions using explanations instead of gold labels. 

The overall organization of the manuscript is as follows: 

Section 2 critically reviews related work. Section 3 elaborates 

the proposed framework and then discussed in Section 4. 

2 Related work 

Multiple attempts have recently been made to enhance the 

interpretability of E-P-based synthetic explanation generation 

utilizing automatic and human evaluation techniques. Herman 

(2017) formulated functional interpretability correlated with 

cognitive functions and user preferences as functional metrics 

to measure plausibility of explanations [12]. Wiegreffe et al. 

[3] empirically demonstrated that LLMs, including GPT-3, can 

generate plausible explanations using few-shot human-

written explanations and high-quality prompts for question 

answering (QA) and natural language inference (NLI) tasks. 

However, a few other studies have shown that the plausibility 

of synthetic explanations was not acceptable with the absence 

of gold examples since the existing plausibility metrics were 

conflated with faithfulness [13, 14]. 

In a related vein, faithfulness in synthetic explanations has 

been both theoretically and empirically evaluated, considering 

the fact that plausibility does not entail faithfulness. Jacovi and 

Goldberg were the first to establish a criterion for evaluating 

faithfulness of post-hoc explanations [1]. These assumptions 

have subsequently been used to formulate four types of 

faithfulness evaluation methods, including PPE, which 

incorporates generated explanations for model predictions 

[10]. Chen et al. introduced precision- and generality-based 

criteria to evaluate the counterfactual simulatability of post-

hoc explanations using PPE [15]. On a different line of work, 

Lanham et al. demonstrated that corrupted, unfaithful 

explanations would lead an LLM to a different prediction [16]. 

Recently, MentaLLaMA was introduced for interpretable 

mental health analysis, focusing on the quality and 

consistency of generated content, but lacking evidence for the 

human-interpretability criteria of plausibility and faithfulness 

[17]. 

The impact of informativeness and utility in evaluating the 

interpretability of free-text explanations has been minimally 

explored. Chen et al. assessed the amount of new information 

in generated explanations using automatic metrics such as 

rationale quality for QA tasks [8] while Sun et al. measured the 

additional knowledge provided by LLM-generated rationales 

through a human study [18]. Since a proxy model was used to 

evaluate explanations in the aforementioned approaches, an 

explanation could potentially reveal the corresponding labels, 

making it uninformative. The label leakage was mitigated in a 

later approach, RORA by Jiang et al. [19], but human reliability 

and consistency were not assessed. Joshi et al., on the other 

hand, assessed the human utility of free-text explanations for 

QA tasks using accuracy [20]. However, they concluded that a 

reliable metric is necessary to estimate the human utility, 

considering the shortcomings of automatic metrics, including 

accuracy. 

To this end, we propose a theoretical framework, PIFU, to 

evaluate the human-interpretability of free-text explanations 

reformulating metrics, such as Plausibility, Informativeness, 

Faithfulness, and Utility. The proposed framework can be used 

to demonstrate how synthetic explanations contribute to ICL 

downstream performance, including depression detection. 

3 Interpretability framework 

3.1 Study overview 

Our aim is to detect depression and anxiety of user postings P 

extracted from Reddit and Twitter incorporating task-specific 

demonstrations D = {d1, d2, …, dn} and their explanations E 

generated by multiple LLMs. Due to its effectiveness in 

retrieving D from unseen datasets across various ICL tasks, we 

choose unified demonstration retriever (UDR) [21] encoder as 

our demonstration retrieval method. UDR selects the most 

relevant samples from the Reddit Self-reported Depression 

Diagnosis (RSDD) [22] and Self-Reported Mental Health 

Diagnoses (SMHD) [23] corpora to serve as task-specific D for 

depression and anxiety detection. The P and their D are used 

to generate free-text E. The E, D, and P are further processed 

to form downstream tasks. Subsequently, the generated E are 

assessed by clinicians for interpretability. 

3.2 E generation and depression/anxiety 
classification 

Multiple LLMs, including Mistral-7B-Instruct and Gemma-7B, 

are utilized to generate E, which are then ranked using E 

ranking method introduced by Ye et al. [25] to select the top 2 

E. These LLMs are known for their reliable E generation in 

decision support systems, including emotion analysis [24]. 

The following prompt is crafted to emphasize the semantic 



 

aspects of D and P, directing the LLM to focus on identifying 

and expressing relevant content when generating E. 

 

# Prompt: Below are in-context examples with 

depressive/anxiety elements and their detailed explanations: 

# Demonstrations: [examples] 

# Prompt: Example: [examples] Explanation: This example 

shows signs of depression because… 

# Input: [postings] 

# Prompt: Now, analyze the [postings] for depressive/anxiety 

elements and provide a detailed explanation 

 

ProDepDet, the prompt framework for LLM transferability 

to previously unseen tasks, is used for depression and anxiety 

classification [11]. The prompt manager logic of ProDepDet 

integrates P, D, and top-ranked E, incorporating task-specific 

prompt templates and verbalizers while keeping the LLM 

frozen. Multiple downstream tasks, such as depressed post 

classification, are formulated for depression and anxiety 

classification purposes using 100M-300M-parameter LLMs, 

including MentalBERT and DisorBERT, which are specifically 

designed for detecting mental disorders [27, 28]. Twitter 

depression 2022 [26] corpus and SMHD are used to construct 

task-specific verbalizers, as well as to evaluate downstream 

tasks. 

3.3 Clinician evaluation protocol 

We design the clinician evaluation protocol to measure the 

interpretability of the generated E and answer the question: 

How can the interpretability of human distress detection in 

social media text-based postings be further improved? A cohort 

of clinical experts, including psychologists and psychiatrists 

(N=12) over the age of 30, is recruited based on their 

qualifications and experience in the field of mental health. 

Informed consent is obtained from each subject, ensuring they 

understand their rights and the nature of the experiment. The 

study protocol is submitted to the IRB at the host institution 

for the study. We follow all IRB procedures to avoid potential 

conflict of interest. 

Each subject is sent out an online form, shown in Appendix 

A, detailing the instructions to be followed for evaluating a set 

of 200 free-text explanations generated in Section 3.2. This 

includes an overview of the context surrounding the 

depression- and anxiety-related examples. For each example, 

there are two generated explanations. The evaluation protocol 

consists of a rating assessment followed by feedback 

evaluation. The rating assessment criteria (1–5, with 1 being 

the minimum and 5 being the maximum)—consistency, 

reliability, and professionalism, shown in Appendix B, are 

based on similar human evaluation methods used for mental 

health-related tasks [17]. 

• Consistency (α): the LLM-generated explanations should 

provide clues and analyses that align with their associated 

depression and anxiety examples. 

• Reliability (β): the trustworthiness of the evidence to 

support the classification results (depressed, anxiety, or 

normal) in the generated explanations. 

• Professionalism (γ): the rationality of the evidence in 

generated explanations from the perspective of psychology. 

 

Following the rating process, the subjects are prompted to 

provide qualitative feedback δ in a free-text format of about 

100 words, highlighting the strengths of the synthetic 

explanations and suggesting areas for improvement. The 100-

word limitation is determined based on the constraints of the 

model refinement process, which is intended to enhance the E 

generation performance. A sample of generated explanations 

is shown in Appendix C. 

3.4 Clinician evaluation metrics 

The rating values and free-text expert feedback are used to 

develop the interpretability metrics. Inspired by cognitive 

functional metrics and user preferences [10], we incorporate 

the expert ratings and free-text feedback as input to develop 

interpretability metrics for plausibility, informativeness, and 

utility. 

Plausibility incorporates reliability β and professionalism 

γ ratings to assesses how convincing the explanation is to 

clinicians. The evidence supporting the downstream 

classification results in the generated E, along with the 

rationality of those results from the perspective of experts, 

collectively measures the degree of plausibility using β and γ.  

The plausibility of explanations for a given distress example 

𝓘𝓅 can be presented as 

 

ℐ𝓅 =
1

𝐶
(

∑ 𝛽𝐶
𝑖=1 ⊕ ∑ 𝛾 𝐶

𝑖=1

∑ (𝛽. 𝛾)𝐶
𝑖=1

),  (1) 

 

where C denotes the number of E per example. Here, 𝓘𝓅 ∈ [0,1], 

indicating any value within the range of 0 to 1, inclusive. 

Informativeness, on the other hand, comprises 

consistency α and reliability β human ratings to measure how 

much new information is provided by the number of 

explanations, C, to justify the downstream prediction. α 

assesses the clues provided by E, while β evaluates the 

trustworthiness of supporting the model classification results, 

making them suitable for determining the degree of 

informativeness. The informativeness of E for a given distress 

example 𝓘𝒾 can be presented as: 

 

ℐ𝒾 =
1

𝐶
(

∑ 𝛼𝐶
𝑖=1 ⊕ ∑ 𝛽 𝐶

𝑖=1

∑ (𝛼. 𝛽)𝐶
𝑖=1

) (2) 

 

Here, 𝓘𝒾 ∈ [0,1], indicating any value within the range of 0 to 1, 

inclusive. Incorporating reliability as a measure of 

informativeness allows us to bridge the gap identified in the 

prior work by Jiang et al. [19]. 



 

 

 

 

While plausibility and informativeness offer valuable 

interpretability insights for expert clinicians, their benefits are 

less significant without human reasoning. Utility, therefore, 

incorporates consistency α and reliability β ratings along with 

free-text expert feedback δ to measure the usefulness of E for 

the target audience. To quantify the feedback, a similarity 

model, such as SBERT [29], is used to measure the similarity 

between the contextual representations of E and encodings 

derived from expert feedback. According to Joshi et al., the 

similarity between synthetic rationales and the corresponding 

expert feedback is an effective indicator of human utility [20]. 

The utility 𝓘𝓊 can be presented as 

 

ℐ𝓊 =
1

𝐶
∑ 𝑠𝑖𝑚(𝜙ℰ , 𝜙𝛿). (

∑ 𝛼𝐶
𝑖=1 ⊕ ∑ 𝛽 𝐶

𝑖=1

∑ (𝛼. 𝛽)𝐶
𝑖=1

)

𝐶

𝑖=1

,  (3) 

 

where 𝜙ℰ and 𝜙δ denote contextual representations of E and 

encodings derived from the expert feedback for the i-th 

explanation. Here, 𝓘𝓊 ∈ [0,1], indicating any value within the 

range of 0 to 1, inclusive. In contrast to automatic metrics, 

such as accuracy, used to evaluate the usefulness of 

explanations, 𝓘𝓊 provides a more interpretable metric for 

measuring human utility. 

Faithfulness indicates how accurately an E represents the 

reasoning process of a model. E that lack faithfulness can be 

risky, as they may appear plausible and convincing to humans, 

leading users to over-trust the model despite its potential 

biases. To reformulate the faithfulness of free-text E, we use 

PPE, a widely used methodology for assessing the faithfulness 

of post-hoc E [10]. We use PPE under the assumption that an E 

is unfaithful if it leads to a different prediction than the one 

made by the model it is meant to explain. Drawing inspiration 

from the approach of Ye et al. [30], we adopt the feature 

importance score as the PPE technique for predicting model 

decisions. For the downstream prediction tasks performed by 

LLMs, such as MentalBERT in Section 3.2, feature importance 

scores are obtained using postings and their demonstrations 

as input. These scores are derived by integrating the gradients 

of the model’s output with respect to input features, both with 

(w/) and without (w/o) E. The Euclidean Distance 𝒟 is used to 

quantify the semantic distance between the feature 

importance scores. 

 

𝒟(𝜙𝑥
𝑤/ 𝐸

, 𝜙𝑥
𝑤/𝑜 𝐸

) = √∑(𝜙𝑥,𝑖
𝑤/ 𝐸

− 𝜙𝑥,𝑖
𝑤/𝑜 𝐸

)
2

𝑛

𝑖=1

, (4) 

 

where n, x, 𝜙x, and 𝜙x,i denote number of input features, the 

input feature vector, the feature importance vector, and the 

importance score for the i-th feature in the vector, 

respectively. 

If 𝒟 is larger than a threshold 𝒯 determined empirically, it 

indicates that E alters model’s decision-making process, 

suggesting that E may not faithfully represent the original 

model’s reasoning. The faithfulness 𝓘𝒻 can be presented as: 

 

ℐ𝒻 = {
𝐹𝑎𝑖𝑡ℎ𝑓𝑢𝑙 ← 𝒟(𝜙𝑥

𝑤/ 𝐸
, 𝜙𝑥

𝑤/𝑜 𝐸
) ≤ 𝒯

𝑈𝑛𝑓𝑎𝑖𝑡ℎ𝑓𝑢𝑙 ← 𝒟(𝜙𝑥
𝑤/ 𝐸

, 𝜙𝑥
𝑤/𝑜 𝐸

) > 𝒯
  (5) 

 

4 Discussion 

The proposed framework establishes more sophisticated 

interpretability metrics to assess LLM-generated free-text 

explanations, potentially addressing limitations of automatic 

evaluation metrics used for ICL-based DMH tasks. Selecting 

expert reliability and professionalism is effective for 

measuring the plausibility of explanations, as reliability 

provides evidence to support the model’s outcome, while 

professionalism evaluates the rationality of the evidence in 

the generated explanations from a clinical perspective. In this 

context, the target audience consists of expert clinicians, 

where the combination of reliability and professionalism 

determines the plausibility of synthetic explanations that are 

interpretable to them. An explanation may appear entirely 

plausible if it fully aligns with human reasoning, yet it could be 

completely unfaithful if it does not reflect the model’s actual 

decision-making process. Hence, plausibility does not ensure 

faithfulness, and vice versa. Since we only consider expert 

ratings for the plausibility metric, we can confidently state 

that our proposed plausibility metric is not conflated with the 

metric of faithfulness. 

Conversely, faithfulness has been used to evaluate post-

hoc explanations, but it has yet to be adapted for assessing 

free-text explanations. Although our framework assesses the 

human interpretability of LLM-generated output, it remains 

incomplete without a metric to evaluate model faithfulness. 

Given the shortcomings of other LLM faithfulness evaluation 

methods, such as axiomatic-based evaluation, and robustness 

evaluation, PPE is used in this study due to its sensitivity to 

faithfulness [10]. We reformulate the metric of faithfulness by 

incorporating feature importance scores as the PPE technique 

for predicting model decisions. Feature importance scores, 

derived from methods like integrated gradients, aim to 

highlight the contribution of input features to the model’s 

output. This directly reflects the model’s internal decision-

making process, making it a good proxy for evaluating 

faithfulness. These scores are obtained solely by considering 

the model’s output, without incorporating expert ratings for 

free-text explanations, to distinguish model reasoning from 

human reasoning.  This allows us to evaluate the model’s 

predictions with and without explanations while preserving 

the fundamentals, including the fact that faithfulness should 

exclude human judgment regarding the quality of the 

explanations. Moreover, faithfulness evaluation ensures that 

explanations accurately reflect the model’s reasoning, helping 



 

stakeholders avoid blindly trusting outputs that might be 

based on misleading or irrelevant factors. 

Evaluating informativeness and utility in the context of 

DMH remains unexplored. Incorporating expert ratings on 

consistency and reliability to evaluate informativeness fulfill 

the need for an interpretability metric that measures how 

much new information the explanation provides to justify a 

model’s prediction, surpassing automatic metrics such as 

rationale quality. Although rationale quality provides an 

average score for the generated explanations, it lacks detailed 

insights into the important clues offered by the explanations 

and how they align with associated depression or anxiety 

examples. More importantly, an automatic metric, such as an 

average score, does not adequately address the 

interpretability of LLM-generated content in the context of 

DMH. Utility, on the other hand, targets a wide range of the 

stakeholders, providing valuable interpretability insights. We 

incorporate human feedback alongside ratings, as expert input 

can serve as a rubric for evaluating generated explanations, 

with clinicians as the primary target audience. The semantic 

similarity between synthetic rationales and the corresponding 

free-text feedback, along with consistency and reliability 

ratings, demonstrates the usefulness of generated content in 

DMH. This includes the provided clues and trustworthiness of 

evidence to support for downstream predictions, helping 

audience understand the utility of the generated content. The 

proposed interpretability metric for human utility addresses 

the limitations of existing automatic metrics, such as accuracy, 

to assess the usefulness of LLM-generated content for the 

target audience. Therefore, the question — How can the 

interpretability of human distress detection in social media text-

based postings be further improved? — can be considered 

answered. 

The proposed design of PIFU outlines a robust framework 

that goes beyond the criteria of plausibility, informativeness, 

and utility by incorporating additional factors such as 

accountability and credibility [31]. While one could argue that 

experts can directly assess plausibility, informativeness, and 

utility, this generalization broadens the scope of evaluation. 

To validate the proposed framework, we will adopt key 

strategies, including expert agreement validation, thematic 

validation for feedback analysis, and ground truth comparison. 

Expert agreement validation measures the inter-rater 

reliability among the experts to ensure consistency in human 

ratings. Metrics such as Fleiss’ Kappa or Cohen’s Kappa will be 

employed to quantify agreement. Clinician-provided free-text 

feedback will undergo thematic analysis to identify recurring 

themes and key insights about generated explanations. Two 

independent researchers will analyze the feedback to ensure 

reliability and resolve discrepancies through discussion. In 

ground truth comparison, a benchmark dataset with 

explanations pre-labeled by expert consensus will serve as the 

ground truth. The IMHI corpus is one such benchmark for 

DMH tasks [17]. The framework's outputs will be compared 

against this dataset to validate its ability to differentiate 

between high- and low-quality explanations. This multi-

faceted validation ensures rigor and alignment with clinical 

expectations. 

Our findings are currently limited to evaluate LLM-

generated free-text explanations. Improving these metrics for 

evaluating synthetic explanations generated by other types, 

such as structured explanations, is a potential direction. 

Although we critically consider the potential overlap between 

plausibility and faithfulness, we did not examine such 

relationships between faithfulness and informativeness or 

faithfulness and utility. The expert natural language feedback 

is restricted to a 100-word limit; therefore, the semantic 

similarity used for the utility metric is constrained by the 

context length. Furthermore, we limited ourselves to using 

SBERT for quantifying the expert feedback, and more 

constructive methods, such as thematic analysis, should be 

incorporated to effectively extract key insights from the free-

text clinician feedback. While task-specific instructions are 

essential for certain ICL few-shot reasoning tasks, the present 

study does not incorporate them alongside the in-context 

examples and their corresponding explanations. The present 

study is limited to 7B-parameter LLMs for generating 

explanations. Further evaluations should include larger 

models, such as LLaMA-3-70B, to assess interpretability at an 

increased scale. 

Although the proposed framework marks a significant step 

forward in evaluating human interpretability of synthetic 

content, several challenges need to be addressed. Different 

clinicians might interpret consistency, reliability, and 

professionalism differently, potentially impacting the 

robustness of the interpretability metrics. Restricting expert 

feedback to 100 words could limit the depth of insights 

provided, especially when evaluating complex explanations or 

diverse DMH contexts. The interpretability metrics may 

perform well for specific tasks like depression or anxiety 

detection but may need extensive re-tuning to generalize to 

other DMH tasks. Faithfulness evaluations based on PPE 

require threshold values for metrics like semantic distance. 

Determining and validating these thresholds across different 

DMH tasks can be challenging and might affect the consistency 

of results. Evaluating utility for a diverse range of 

stakeholders, including both expert clinicians and laypersons, 

may require distinct criteria, leading to complexity in defining 

a single utility metric that satisfies both audiences. 

5 Conclusion 

In this study we propose PIFU, a novel theoretical human-in-

the-loop framework designed to evaluate interpretability of 

synthetic explanations within the context of DMH. First, we 

utilize SOTA LLMs to generate free-text explanations for the 

retrieved ICL examples sourced from RSDD and SMHD, 

Reddit-based corpora used for DMH tasks, including 



 

 

 

 

depression and anxiety detection. A prompt-based framework 

is then employed for downstream depression and anxiety 

classification tasks, incorporating task-specific prompt 

templates and verbalizers, along with input user postings, ICL 

examples, and their explanations. Second, a cohort of clinical 

experts is recruited to rate the LLM-generated explanations 

on a Likert-scale (1-5) based on consistency, reliability, and 

professionalism. This is followed by expert-written natural 

language feedback to develop interpretability metrics for 

plausibility, informativeness, and utility. We further refine the 

metric of faithfulness by focusing on predicting model 

decisions using explanations rather than gold labels. 

In the next phase of the study, we will utilize the proposed 

framework, along with appropriate automatic metrics, to 

conduct experiments on multiple downstream DHM screening 

tasks, including depression and anxiety classification. 

Enhancing the human-in-the-loop aspect by incorporating 

real-time clinician feedback into the model refinement 

process could lead to more effective and contextually relevant 

explanations. By systematically applying thematic insights to 

modify the prompt design, the model explanation generation 

process becomes more aligned with expert expectations. 

Future work could expand the interpretability metrics beyond 

plausibility, informativeness, faithfulness, and utility, 

incorporating additional dimensions like fairness, 

accountability, or actionability, particularly in high-stakes 

fields like DMH. Ethical considerations in data privacy, 

anonymization, and consent need to be deeply integrated into 

the framework. Given the global nature of mental health 

issues, future work could evaluate how the framework 

performs across different languages and cultural contexts, 

ensuring that the interpretability metrics are robust and 

applicable worldwide. 
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Appendix A – Instructions for clinicians  

  



 

Appendix B – Rating assessment criteria 

 
Consistency 
 
1 (Very Inconsistent): The explanation is completely 

disconnected from the associated depression or anxiety 
example. It provides conflicting clues and analyses that do 
not align with the model's output. 

2 (Inconsistent): The explanation is mostly inconsistent with 
the depression or anxiety example. It contains several 
clues or analyses that don't align well with the example, 
causing confusion. 

3 (Moderately Consistent): The explanation is somewhat 
consistent with the depression or anxiety example. Some 
clues and analyses align with the example, but there are 
noticeable discrepancies that may hinder understanding. 

4 (Consistent): The explanation is mostly consistent with the 
depression or anxiety example, and most clues and 
analyses align well with the example, providing a clear 
understanding of the reasoning process. 

5 (Highly Consistent): The explanation is entirely consistent 
with the depression or anxiety example. All clues and 
analyses align perfectly with the example, providing a 
coherent and well-supported reasoning process. 

 
Reliability 
 
1 (Very Unreliable): The evidence presented in the 

explanation is completely untrustworthy and does not 
support the classification results (depressed, anxiety, or 
normal). The reasoning is flawed or misleading. 

2 (Unreliable): The explanation provides some evidence, but it 
is not fully trustworthy. The evidence may be weak, 
inconsistent, or irrelevant, making the classification 
results questionable. 

3 (Moderately Reliable): The evidence in the explanation is 
somewhat reliable, but it may lack strong support for the 
classification results. It generally aligns with the model’s 
decision, but with some areas of uncertainty. 

4 (Reliable): The explanation provides trustworthy evidence 
that strongly supports the classification results. The 
reasoning is clear, and the evidence aligns well with the 
model's output. 

5 (Highly Reliable): The evidence in the explanation is highly 
reliable, providing strong support for the classification 
results. The reasoning is clear, trustworthy, and fully 
aligned with the model’s decision-making. 

 
Professionalism 
 
1 (Very Unprofessional): The explanation is highly 

unprofessional, using inappropriate or irrational evidence 
that would not be accepted in a psychological or clinical 
context. It lacks critical reasoning. 

2 (Unprofessional): The explanation is unprofessional in some 
aspects. It may use language or reasoning that is not 
appropriate from a psychological perspective or contains 
flaws that reduce its credibility. 

3 (Moderately Professional): The explanation is mostly 
professional but may include some slight lapses in 
rationality or tone that could benefit from refinement. It is 
generally appropriate from a psychological perspective 
but not perfect. 

4 (Professional): The explanation is professional, using 
rational and reasonable evidence that aligns with 
psychological standards. It maintains a tone and style 
appropriate for clinical or academic settings. 

5 (Highly Professional): The explanation is highly 
professional, demonstrating clear, rational, and evidence-
based reasoning. It aligns perfectly with psychological 
standards and is appropriate for clinical settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Appendix C – Sample of explanations to be used 
for evaluations 

 

Post_Id Example Explanation 
Consistency 
(1 to 5) 

Reliability 
(1 to 5) 

Professionalism 
(1 to 5) 

Feedback 
(100 words 
max) 

1.26E+18 my biggest problem 
be overthinking 
everything 

Overthinking is often associated with anxiety 
disorders, but it can also be a symptom of 
major depressive disorder (MDD). Persistent 
overthinking can lead to rumination, which is 
a persistent focus on a negative thought, 
feeling, or experience. Rumination can result 
in increased sadness, hopelessness, and 
feelings of helplessness. 

    

  The repeated emphasis on "overthinking 
everything" is indicative of rumination, which 
is a common symptom of Major Depressive 
Disorder (MDD) as per the DSM-5. Rumination 
includes dwelling on negative emotions and 
thoughts. 

    

1.26E+18 the worst sadness 
be the sadness you 
have teach yourself 
to hide 

This statement reflects the person's inability 
to express or acknowledge their emotions, 
which is a common symptom of depression. 
Hidden sadness can contribute to feelings of 
isolation and alienation, worsening the overall 
mood and increasing the likelihood of 
depression. 

    

  Statement 3 implies the presence of 
"depressed mood most of the day, nearly every 
day" (Criterion A). Additionally, the need to 
hide sadness highlights the possibility of 
feelings of worthlessness (Criterion A). 

    

 
 


