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Abstract
Large language models have transformed generative AI develop-
ment, with foundation models serving as building blocks for diverse
applications. The resulting auditing landscape focuses either on
technical evaluations of foundation model capabilities or domain-
specific assessments of deployed applications. However, these ap-
proaches miss crucial ‘middle layers’ that transform user inputs
and model outputs before they reach the foundation model. These
transformations can significantly alter system behaviour in ways
neither foundation model nor application-level audits can detect
and occur through components such as memory functions, system
prompts, knowledge bases, and safety guardrails. Additionally, the
transformations are operating in a hierarchy, allowing them to over-
ride each other. While such transformations potentially reshape
the original intent of prompts, their effects vary in both magni-
tude and consequence. In practice, multiple stakeholders influence
these layers but lack comprehensive visibility into both individual
and cumulative effects. No single entity maintains oversight across
the collective impact, hampering efforts to evaluate and audit the
system as a whole. This position paper identifies gaps in current
auditing approaches and indicates technical and human-centered
research directions for evaluating transformations through inter-
mediate layers.

CCS Concepts
• Computing methodologies → Natural language processing;
• Social and professional topics→ Socio-technical systems;
Technology audits.
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1 Introduction: ‘Centering the Middle’
Large language models (LLMs) have fundamentally transformed
how we develop and deploy artificial intelligence (AI) systems.
The field has consolidated around foundation models that offer
general capabilities [12, 102, 123], replacing specialized task-specific
systems. These foundation models now serve as the basis for a wide
range of applications [33, 102, 120], each adapted to specific contexts
and requirements.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HEAL@CHI ’25, April 26, 2025, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).

Between user input and these foundation models lie multiple
intermediate layers that progressively transform information, in-
cluding memory functions [77], system prompts [109], and rea-
soning processes [31, 80, 111], each interpreting and potentially
modifying the original input/output. These transformations occur
both explicitly through direct modifications and implicitly through
layer interactions, creating a cascade where changes influence sub-
sequent processing steps. This relationship is shown in Figure 1 for
LLM-based systems.

Figure 1: A user prompt can pass through multiple middle
layers, such as memory functions, system prompts, knowl-
edge bases, and user-specific preference data before reaching
the ‘black-box’ foundation model and vice-versa.

1.1 Middle Layer Architectures
OpenAI’s ‘chain of command’[79], provides a technical perspective
on the hierarchical nature of these transformations. User prompts
flow through increasingly powerful prompt categories: from user-
derived guidelines and preferences, through developer-specified
prompts, to platform-level modifications from OpenAI. Each cate-
gory in this hierarchy can override prompts from previous levels,
with platform-level modifications wielding the most power to re-
shape the input.

However, the chain of command represents just one dimension
of these ‘middle layers’. The full cascade encompasses a broader
ecosystem: (possibly hidden) chain-of-thought or reasoning pro-
cesses [31, 80, 111], memory functions [77] that retain and integrate
past interactions, knowledge bases that supplement original inputs
[36, 122, 125], tool use capabilities [44, 87, 110], further agentic
functions [42], and both explicit and implicit safety guideline adap-
tations [34, 67]. Each element transforms not only how the foun-
dation model processes the original query, but also how responses
are generated, filtered, and presented back to the user—creating a
bidirectional flow of transformations throughout the entire system.

1.2 Gaps in Auditing LLMs
In this position paper, we identify a critical gap in current ap-
proaches to auditing LLM-based systems: the lack of attention to
how these middle layers transform user inputs and fundamentally
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shape system behavior. While existing auditing frameworks focus
on either foundation models or domain-specific applications (see
section 2), we argue that understanding the transformations oc-
curring in these intermediate layers is essential for comprehensive
system evaluation.

What makes addressing this gap particularly challenging is the
potentially complex structures of these transformations. These
interactions can overlap and override each other, creating transfor-
mation patterns where visibility is limited to one’s own changes
but not to how these interact with modifications from other layers.
This fractured visibility creates a systemic evaluation challenge
that current auditing approaches are ill-equipped to address.

1.3 Cascading Transformations: A Mental
Health Example

To illustrate how these middle-layer transformations manifest in
practice, consider a mental health support chatbot. An end-user
writes ‘I’m feeling overwhelmed.’ The memory layer retrieves their
recent messages about project deadlines and late-night work ses-
sions. The therapeutic guidelines layer, seeing this work-related
pattern, activates its workplace counseling protocols. The safety fil-
ter then combines these signals with built-in risk assessment rules,
automatically escalating the case as potential burnout. A simple
expression of momentary stress transforms into a high-priority
workplace mental health case.1

This example reveals how traditional evaluation approaches fail
to capture the full transformation process. Foundation model audits
would reveal the model’s general ability to recognize emotional
distress, while application audits would show the final therapeutic
interventions offered. However, neither approach captures how
components like memory, knowledge bases, and safety filters func-
tion as crucial translation points within the system. Each compo-
nent serves a specific function—memory systems retrieve contex-
tual history, knowledge bases supply domain expertise, and safety
filters implement protective boundaries. While these components
can be evaluated individually, their sequential interactions create
cascading transformations that standard evaluation methods fail
to capture. A holistic system evaluation that examines these mid-
dle layers is necessary to understand the complete transformation
process.

1.4 The Stakeholder Cascade
As foundation models are deployed across diverse applications [60],
these middle layers grow in complexity and importance. Their cu-
mulative effects create a cascade of transformations that becomes
increasingly difficult to trace and evaluate across expanding data-
driven AI supply chains[14, 27, 29]. This complexity is further com-
pounded by the distributed responsibility across multiple stake-
holders, each with different levels of system access and control
[75].

The stakeholder cascade reflects the reality of modern LLM-
based systems: developers implement general guardrails, deployers
configure system prompts and tools, and end-users set preferences

1Such escalations may be appropriate and even desirable in certain contexts. Still,
clarity about how the layers interact and shape outcomes helps us evaluate system
behaviours.

[4, 76]. In ourmental health chatbot example, cliniciansmight imple-
ment therapeutic protocols based on established guidelines, while
platform developers enforce content policies that may interact with
those protocols in unpredictable ways. These elements function
as crucial intermediaries in connecting foundation model capabili-
ties with application behavior, ultimately shaping how individuals
interact with and perceive the system.

This distributed ‘responsibility’ creates significant risks[29]: safety
measures might be weakened when higher-priority rules override
them, user preferences could be silently overridden by system-level
constraints, and system behaviors may drift from their intended
purposes as layers interact in unexpected ways. Moreover, when
issues arise, the fragmented nature of these modifications makes it
difficult to identify which layer or interaction caused the problem –
creating ambiguous accountability and challenging troubleshoot-
ing.

These opaque transformative layers create challenges for system
reliability, safety, and fairness across all LLM applications. While
these issues are particularly critical in domains like healthcare, fi-
nance, and governance, they affect any context where users rely on
LLMs for information processing or decision-making. Traditional
auditing approaches, which focus on either foundation models or
applications, fall short of addressing this multi-layered complexity,
leaving a critical oversight gap in transparency [13] and account-
ability [29].

1.5 Our Contributions
This paper aims to brings attention to middle layers as a critical yet
overlooked component in AI systems that requires dedicated con-
sideration in system design, evaluation frameworks, and auditing
methodologies. To this end, we make the following contributions:

• We analyze the current landscape of LLM-based AI audit-
ing approaches and identify their limitations in addressing
middle-layer transformations

• We define and characterize the cascading effects that oc-
cur as user inputs and outputs pass through multiple trans-
formative layers, revealing their broader implications for
transparency, accountability, and system performance

• We propose a research agenda spanning technical, human-
centered, and integratedmethodologies for evaluatingmiddle-
layer transformations in LLM-based systems

While we focus on systems built on or around LLMs in this
paper, these principles and methodologies can be broadened to
other model architectures and general purpose AI systems that
employ similar layered transformation processes.

2 The Current LLM Auditing Landscape
Current algorithmic auditing approaches for generative language
models center on two endpoints: foundation model capabilities and
domain-specific applications. This ‘dual-track’ approach creates
a significant gap in understanding how these systems operate in
practice, particularly in transforming and processing information
between these endpoints. While both approaches offer valuable
insights, their separation limits our ability to comprehensively
evaluate LLM-based systems.
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This focus on endpoints leaves open questions about the transfor-
mative processes that occur between them – including the system’s
architectural layers and their impact. To understand these gaps, we
first examine the current landscape of LLM-based system auditing.

2.1 Foundation Model Audits
Foundation model audits examine core model capabilities and lim-
itations through both technical and broader conceptual analyses.
Technical audits and evaluations assess fundamental behaviours
[42, 49, 62, 80, 81], including task performance [3, 23, 44, 51, 106],
bias patterns [45, 84, 95, 104], privacy measurements [83], and
safety properties [94] through controlled experiments that measure
outputs against predetermined benchmarks [6, 26, 88, 100].

Broader foundation model audits examine systemic implications
[10, 113], specifically their development [55, 70, 82] and deployment
[35, 65, 86, 116]. These studies analyze societal impacts [32, 33, 117],
investigate ethical challenges [19, 43, 113], and evaluate approaches
to algorithmic accountability [11, 29, 30, 90] and responsible AI de-
velopment [16, 64, 118]. While valuable for understanding general
implications, these analyses often remain disconnected from spe-
cific implementation contexts.

2.2 Domain-Specific Application Audits
Application-level audits evaluate deployed systems within specific
real-world contexts, focusing on user experiences [25, 38, 39, 68],
interaction patterns [66, 115], and domain-specific performance
metrics [61, 71, 89, 96]. They often reveal how systems perform
in practice, highlighting gaps between theoretical capabilities and
actual performance. These assessments can generate targeted de-
sign recommendations [101, 108] that address particular application
requirements and user needs [9, 46, 54, 92].

While these focused approaches provide valuable insights within
their domains, they typically treat the foundation model as a black
box [17], concentrating on final outputs and user interactions. In
many cases, particularly where AI systems are integrated as one
component in a larger supply chain [15, 28, 29], this black-box treat-
ment is inherent to the system’s architecture rather than a method-
ological choice. However, this opacity—whether by necessity or
design—obscures the crucial transformations occurring between
user input and system response.

2.3 Single-Layer Audits
Current research examines middle layers primarily in isolation, fo-
cusing on specific capabilities without capturing their interactions:

While foundation and application-level audits provide valuable
insights, both typically operate with limited access to system inter-
nals [17]. Foundation model audits may examine certain technical
components, e.g. model weights, architectures, and training data,
but access remains restricted for both standard elements and the
intermediate layers between foundation models and applications.
This restricted visibility affects our understanding of how modifi-
cations and interactions occur through these intermediate layers.
Current audits examine these middle layers in isolation, focusing
on specific capabilities:

System messages [51, 52, 73, 74, 88] and instruction hierarchies
form a ‘chain of command’ [79] that determines how models in-
terpret and prioritize different directives [44, 109]. Research shows
models can follow both individual simple [72, 109, 124] and complex
instructions [47, 119], but questions remain about their effective-
ness in real-world contexts where multiple directives may conflict
[48, 50].

Evaluations of guideline following often focus on individual rules
[34, 67, 91] or circumvention of these, i.e. jailbreaking [22, 100, 112],
missing how guidelines interact with other system elements.

Research on generative AI highlights capabilities in agentic be-
haviors [2, 18, 21, 42, 63, 78], tool use [24, 93, 97, 105, 110], and
knowledge base integration [37, 53, 56] – all representing middle
layers that transform inputs between user requests and model out-
puts.

3 Missing the Middle: Middle-Layer Auditing
Challenges

Current foundation model and application-specific auditing ap-
proaches fail to capture the critical middle layers where significant
transformations occur, indicating a clear need for holistic evalua-
tion methodologies. These methodologies must examine how mul-
tiple layers interact and collectively transform inputs and outputs
throughout the system pipeline. Having established that current
auditing approaches focus primarily on foundation models and
applications while overlooking the crucial middle layers, we now
examine the specific challenges these layers present for compre-
hensive system evaluation.

3.1 The Cascade Effect
At the core of this challenge is how middle layers modify inputs/
outputs through sequential transformations, with each layer’s changes
affecting how subsequent layers process that input – what we term
a cascade. Returning to our hypothetical mental health chatbot
example: the chat history alters the user’s initial input, therapeu-
tic guidelines transform this modified input into an augmented
context, and safety guidelines process this accumulated message
before it reaches the foundation model and also process its output.
Each step in this cascade not only transforms the input but shapes
the context for all following transformations, potentially amplify-
ing small initial changes into significant shifts in system behavior.
These effects become more pronounced in complex systems where
multiple layers interact hierarchically in various combinations.

It is important to note that we use ‘cascade’ metaphorically to
describe the cumulative flow of transformations [98], distinct from
technical cascade models in machine learning or software engineer-
ing (e.g., cascading classifiers [1] or waterfall models [85]).

3.2 Opacity in AI Supply Chains
This complexity increases substantially when considering howLLM-
based technologies are embedded within broader technological
infrastructures. Consider a healthcare system where an LLM is in-
tegrated into clinical workflows: the LLM interacts with electronic
health records that preprocess patient data, interfaces with clin-
ical decision support systems that apply medical guidelines, and
operates within institutional compliance frameworks that enforce
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privacy and security protocols. Each integration point introduces
additional transformative layers that modify information flows.
These complex integration environments, often referred to as AI
supply chains [7, 8, 27, 29, 114], involve numerous stakeholders
with differing levels of system access and control:

• Foundation model developers implement base model capa-
bilities and general safeguards

• System integrators configure domain-specific policies and
integration points

• Domain specialists define field-specific guidelines and ter-
minology standards

• End-users adjust individual preferences and contextual pa-
rameters

Each stakeholder typically has visibility into only their portion
of the system [58, 98]. A physician using an LLM-enhanced diag-
nostic tool may be unaware that their queries pass through privacy
filters, medical terminology standardizers, and knowledge base aug-
menters before reaching the foundation model – each potentially
altering the original question in significant ways. Technical docu-
mentation rarely explores these interaction effects, focusing instead
on individual components rather than their combined behavior.

This limited visibility creates blind spots where transformations
happen without any stakeholder having full oversight. The problem
becomes even more complex when layers learn implicitly from user
behaviour [79] rather than following explicit rules, making their
effects harder to predict and audit.

The combination of limited layer visibility and growing system
complexity points to the need for novel auditing methods that can
capture both individual layer behaviors and their collective effects
within and across AI systems [98, 99].

3.3 Key Research Challenges
Based on our analysis of middle-layer transformations and AI sup-
ply chains, we identify two fundamental challenges that any com-
prehensive research agenda must address [58, 98]:

• Tracking transformations across interacting layers: Ex-
isting approaches do not effectively track changes across
multiple interacting components. While foundation model
audits, layer-specific evaluations, and domain-focused as-
sessments each provide valuable insights, they miss how
transformations compound and interact in practice.

• Managing increasing system complexity: The growing
sophistication of LLM supply chains introduces additional
layers and interactions, making systematic analysis increas-
ingly difficult [27] . Even with direct access to individual
layers, current evaluation methods struggle to capture emer-
gent effects from component interactions.

The combination of limited layer visibility and growing system
complexity points to the need for novel auditing methods that can
capture both individual layer behaviors and their collective effects
across AI systems.

We further identify five critical technical implications of
middle-layer processing that represent unique challenges for AI sys-
tem design and evaluation. As shown in Table 1, these implications
– semantic transformation, authority hierarchy, invisible processing,
emergent behaviors, and scaling resistance – form a framework

Semantic Transforma-
tion

Each layer can fundamentally alter an in-
put’s meaning, intent, and structure be-
yond surface-level changes, potentially
distorting user intent.

Authority Hierarchy Layers operate in a hierarchy of authority,
where higher-level transformations can
override or nullify lower-level changes,
obscuring accountability and making it
difficult to trace the source of harmful out-
comes.

Invisible Processing These transformations occur invisibly
to most stakeholders, preventing effec-
tive oversight of compounding changes
throughout the system.

Emergent Behaviors Layer interactions can create emergent
behaviors that escape both foundation
model and application-level audits but sig-
nificantly impact system responses.

Scaling Resistance Research shows that foundation models
become less willing to modify their core
behaviors and preferences as they scale
up, suggesting fundamental limits to how
much middle layers can reshape model
responses.

Table 1: Critical Technical Implications of Middle-Layer Cas-
cades

for understanding how cascading effects manifest throughout AI
systems. Each implication highlights distinct challenges that cur-
rent evaluation approaches fail to address. Together, they illustrate
why middle layers demand specialized attention beyond traditional
auditing methods and inform the research agenda in Section sec-
tion 4.

4 Mapping the Middle: A Research Agenda for
Middle-Layer Auditing

To develop human-centered systems, we need better ways to under-
stand and evaluate these transformative processes. System design
must ensure that middle-layer modifications enhance rather than
distort the user’s intent. This focus becomes particularly important
as foundation models expand into diverse applications, each requir-
ing specific combinations of middle layers to bridge between model
capabilities and application requirements.

The following section outlines a research agenda that addresses
these challenges through technical, human-centered, and integrated
approaches to understanding and evaluating middle-layer transfor-
mations.

4.1 Technical Research Directions
The technical implications we’ve identified suggest important re-
search opportunities for the socio-technical research community:

• Methods to track data flow and transformations through
middle layers

• Fairness implications of transformation hierarchies
• Evaluation of system behavior changes through different
middle layer combinations
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• Assessment of safety mechanism robustness across mid-
dle layer interactions

4.2 Human-Centered Investigation Approaches
The core challenge of human-centered middle-layer research is
understanding the domain-specific contexts in which these systems
operate. Different application domains fundamentally shape how
these layers are configured and used – medical systems demand
strict safety protocols, legal applications require precise terminol-
ogy management, and educational tools need adaptable difficulty
scaling. This context specificity means research must examine not
just the technical aspects of middle layers, but how diverse human
stakeholders interpret, configure, and interact with these systems
in their particular domains.

The identified technical effects manifest in critical ways across
deployed systems: sequential transformations can alter system be-
havior in ways stakeholders cannot predict [102, 121], account-
ability becomes fragmented across multiple parties [29, 69, 107],
safety-critical applications face compounding risks [20, 41] and
bias detection grows increasingly complex as discriminatory effects
may emerge from cumulative interactions [40, 57, 59]. Importantly,
these implications arise not from theoretical concerns but from
the everyday operation of deployed systems, where middle layers
interact with each other.

These real-world implications highlight opportunities for ex-
panded research across disciplines:

• Developer-focused studies examining how technical teams
implement domain-specific requirements through middle
layer configurations

• Domain expert investigations exploring how profession-
als in different fields interact with and adapt middle layer
configurations [5, 103]

• Cross-domain analyses comparing how different sectors
handle similar challenges using middle layers

• Longitudinal analyses tracking how domain-specific re-
quirements evolve and middle layer configurations adapt
over time

4.3 Integration Approaches
Beyond isolated technical or human-centered methods, understand-
ing these systems requires approaches that bridge multiple per-
spectives and methodologies. Several integrated approaches offer
potential:

• Participatory audit frameworks combining stakeholder
expertise with technical analysis

• Mixed-method studies combining layer tracking with user
impact assessment

• Cross-disciplinary evaluation frameworks incorporating
both system behaviour and organizational context

• Combined analysis of technical fairness metrics and stake-
holder fairness perceptions

• Implication and risk analysis of middle layer auditing;
looking at risks of transparency – e.g., exposing safety guardrails
might ease adversarial attacks.

These integrated approaches could reveal how intermediate layers
shape system behaviour across different contexts and stakeholder

groups. By combining technical analysis with human perspectives,
they offer directions for examining the full scope of layer interac-
tions in LLM-based systems.

5 Conclusion
Current LLM-based auditing approaches miss crucial transforma-
tive processes occurring in middle layers – from system prompts
to memory functions. These layers fundamentally shape system
behaviour through complex interactions that neither foundation
model nor application-level audits can fully capture.

This paper identifies the need to examine how these layers
modify and interact with various inputs/outputs, highlighting a
gap in existing audit frameworks. We outline potential technical,
human-centered, and integrated approaches as starting points for
researchers to examine these layers, their interactions, and their
impacts.

Future research in this direction could enable more holistic inter-
ventions to improve safety and fairness, provide insights into how
different stakeholders shape system behaviour across data-driven
AI supply chains, and reveal how components affect user expe-
riences. As LLM-based systems grow more complex, understand-
ing middle-layer transformations becomes increasingly important
for effective system evaluation and responsible AI development.
While our focus has been on LLM-based systems, the principles
and methodologies we propose can be extended to other general-
purpose AI architectures that employ similar layered transforma-
tion processes (in practice, many AI service-based infrastructures),
including multimodal systems, autonomous agents, and future AI
architectures. We call on human-AI interaction researchers across
disciplines to prioritize this critical area of investigation and develop
robust frameworks for middle-layer auditing.
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